Abstract

We propose a novel phase-matching scheme in GaP whispering-gallery-mode microdisks grown on Si substrate combining modal and 4¯ -quasi-phase-matching for second-harmonic-generation. The technique consists in unlocking parity-forbidden processes by tailoring the antiphase domain distribution in the GaP layer. Our proposal can be used to overcome the limitations of form birefringence phase-matching and 4¯ -quasi-phase-matching using high order whispering-gallery-modes. The high frequency conversion efficiency of this new scheme demonstrates the competitiveness of nonlinear photonic devices monolithically integrated on silicon.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
4¯-quasi-phase-matched interactions in GaAs microdisk cavities

P. S. Kuo, W. Fang, and G. S. Solomon
Opt. Lett. 34(22) 3580-3582 (2009)

Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing

K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. Venugopal Rao, and M. Ebrahimzadeh
Opt. Lett. 28(11) 911-913 (2003)

Optical frequency comb generation through quasi-phase matched quadratic frequency conversion in a micro-ring resonator

Zi-jian Wu, Yang Ming, Fei Xu, and Yan-qing Lu
Opt. Express 20(15) 17192-17200 (2012)

References

  • View by:
  • |
  • |
  • |

  1. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [Crossref]
  2. J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
    [Crossref]
  3. E. Lallier, M. Brevignon, and J. Lehoux, “Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1511–1513 (1998).
    [Crossref]
  4. R. Haïdar, N. Forget, P. Kupecek, and E. Rosencher, “Fresnel phase matching for three-wave mixing in isotropic semiconductors,” J. Opt. Soc. Am. B 21, 1522–1534 (2004).
    [Crossref]
  5. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
    [Crossref]
  6. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
    [Crossref]
  7. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
    [Crossref] [PubMed]
  8. H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396–399 (2014).
    [Crossref]
  9. C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidaković, D. J. Lovering, and J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 22, 1775–1777 (1997).
    [Crossref]
  10. Y. Dumeige, “Miniaturization of Fresnel phase matching using a side-coupled integrated spaced sequence of resonators (SCISSOR),” Opt. Lett. 32, 3438–3440 (2007).
    [Crossref] [PubMed]
  11. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
    [Crossref] [PubMed]
  12. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
    [Crossref] [PubMed]
  13. G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18, 12176–12184 (2010).
    [Crossref] [PubMed]
  14. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412(1995).
    [Crossref]
  15. X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
    [Crossref]
  16. J. Hite, M. Twigg, M. Mastro, J. Freitas, J. Meyer, I. Vurgaftman, S. O’Connor, N. Condon, F. Kub, S. Bowman, and C. Eddy, “Development of periodically oriented gallium nitride for non-linear optics [invited],” Opt. Mater. Express 2, 1203–1208 (2012).
    [Crossref]
  17. M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
    [Crossref]
  18. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs–AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
    [Crossref]
  19. K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. V. Rao, and M. Ebrahimzadeh, “Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing,” Opt. Lett. 28, 911–913 (2003).
    [Crossref] [PubMed]
  20. S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011).
    [Crossref]
  21. Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
    [Crossref]
  22. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007).
    [Crossref] [PubMed]
  23. P. S. Kuo, W. Fang, and G. S. Solomon, “4¯ -quasi-phase-matched interactions in GaAs microdisk cavities,” Opt. Lett. 34, 3580–3582 (2009).
    [Crossref] [PubMed]
  24. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref] [PubMed]
  25. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  26. A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33, 2026–2028 (2008).
    [Crossref] [PubMed]
  27. Z. Yang and J. E. Sipe, “Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators,” Opt. Lett. 32, 3296–3298 (2007).
    [Crossref] [PubMed]
  28. A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett. 33, 2416–2418 (2008).
    [Crossref] [PubMed]
  29. P. Kuo, J. Bravo-Abad, and G. Solomon, “Second-harmonic generation using 4¯ -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [Crossref]
  30. S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39, 3062–3065 (2014).
    [Crossref] [PubMed]
  31. D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
    [Crossref]
  32. L. Li, J. Sun, and T. Chen, “Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators,” IEEE Photon. Technol. Lett. 23, 465–467 (2011).
    [Crossref]
  33. Y. Dumeige and P. Féron, “Second-harmonic generation using tailored whispering gallery modes,” Phys. Rev. A 76, 035803 (2007).
    [Crossref]
  34. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
    [Crossref] [PubMed]
  35. Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
    [Crossref]
  36. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
    [Crossref]
  37. H. Yonezu, Y. Furukawa, and A. Wakahara, “III–V epitaxy on Si for photonics applications,” J. Cryst. Growth 310, 4757–4762 (2008).
    [Crossref]
  38. Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
    [Crossref]
  39. N. Talebi and M. Shahabadi, “All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide,” J. Opt. Soc. Am. B 27, 2273–2278 (2010).
    [Crossref]
  40. H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
    [Crossref]
  41. T. Matsushita, T. Yamamoto, and T. Kondo, “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46, L408 (2007).
    [Crossref]
  42. J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B 38, 4056–4066 (1988).
    [Crossref]
  43. J. R. Kurz, X. P. Xie, and M. M. Fejer, “Odd waveguide mode quasi-phase matching with angled and staggered gratings,” Opt. Lett. 27, 1445–1447 (2002).
    [Crossref]
  44. S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
    [Crossref]
  45. T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.
  46. S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183–192 (2001).
    [Crossref]
  47. O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
    [Crossref]
  48. I. Németh, B. Kunert, W. Stolz, and K. Volz, “Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions,” J. Cryst. Growth 310, 1595–1601 (2008).
    [Crossref]
  49. A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
    [Crossref]
  50. P. S. Kuo and G. S. Solomon, “On- and off-resonance second-harmonic generation in GaAs microdisks,” Opt. Express 19, 16898–16918 (2011).
    [Crossref] [PubMed]
  51. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [Crossref]
  52. M. Bass, Handbook of Optics (McGraw Hill, 1995).
  53. T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
    [Crossref]
  54. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
    [Crossref]
  55. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
    [Crossref]
  56. M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
    [Crossref]

2016 (1)

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

2015 (1)

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

2014 (6)

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

P. Kuo, J. Bravo-Abad, and G. Solomon, “Second-harmonic generation using 4¯ -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39, 3062–3065 (2014).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396–399 (2014).
[Crossref]

2013 (1)

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

2012 (3)

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref] [PubMed]

J. Hite, M. Twigg, M. Mastro, J. Freitas, J. Meyer, I. Vurgaftman, S. O’Connor, N. Condon, F. Kub, S. Bowman, and C. Eddy, “Development of periodically oriented gallium nitride for non-linear optics [invited],” Opt. Mater. Express 2, 1203–1208 (2012).
[Crossref]

2011 (6)

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

P. S. Kuo and G. S. Solomon, “On- and off-resonance second-harmonic generation in GaAs microdisks,” Opt. Express 19, 16898–16918 (2011).
[Crossref] [PubMed]

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

L. Li, J. Sun, and T. Chen, “Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators,” IEEE Photon. Technol. Lett. 23, 465–467 (2011).
[Crossref]

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011).
[Crossref]

2010 (2)

2009 (3)

2008 (4)

I. Németh, B. Kunert, W. Stolz, and K. Volz, “Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions,” J. Cryst. Growth 310, 1595–1601 (2008).
[Crossref]

H. Yonezu, Y. Furukawa, and A. Wakahara, “III–V epitaxy on Si for photonics applications,” J. Cryst. Growth 310, 4757–4762 (2008).
[Crossref]

A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33, 2026–2028 (2008).
[Crossref] [PubMed]

A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett. 33, 2416–2418 (2008).
[Crossref] [PubMed]

2007 (6)

Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007).
[Crossref] [PubMed]

Z. Yang and J. E. Sipe, “Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators,” Opt. Lett. 32, 3296–3298 (2007).
[Crossref] [PubMed]

Y. Dumeige, “Miniaturization of Fresnel phase matching using a side-coupled integrated spaced sequence of resonators (SCISSOR),” Opt. Lett. 32, 3438–3440 (2007).
[Crossref] [PubMed]

Y. Dumeige and P. Féron, “Second-harmonic generation using tailored whispering gallery modes,” Phys. Rev. A 76, 035803 (2007).
[Crossref]

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
[Crossref]

T. Matsushita, T. Yamamoto, and T. Kondo, “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46, L408 (2007).
[Crossref]

2006 (1)

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

2005 (1)

J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
[Crossref]

2004 (4)

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

R. Haïdar, N. Forget, P. Kupecek, and E. Rosencher, “Fresnel phase matching for three-wave mixing in isotropic semiconductors,” J. Opt. Soc. Am. B 21, 1522–1534 (2004).
[Crossref]

2003 (1)

2002 (2)

J. R. Kurz, X. P. Xie, and M. M. Fejer, “Odd waveguide mode quasi-phase matching with angled and staggered gratings,” Opt. Lett. 27, 1445–1447 (2002).
[Crossref]

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

2001 (1)

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183–192 (2001).
[Crossref]

2000 (1)

1998 (3)

E. Lallier, M. Brevignon, and J. Lehoux, “Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1511–1513 (1998).
[Crossref]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
[Crossref]

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
[Crossref]

1997 (2)

1995 (1)

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412(1995).
[Crossref]

1994 (1)

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

1988 (1)

J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B 38, 4056–4066 (1988).
[Crossref]

1987 (1)

H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Abolghasem, P.

Abram, I.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Aitchison, J. S.

Albert, J. P.

J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
[Crossref]

Andronico, A.

Angell, M. J.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

Arjmand, A.

Arnold, J. M.

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Atikian, H. A.

Bahri, M.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

Balocchi, A.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Barclay, P. E.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Bass, M.

M. Bass, Handbook of Optics (McGraw Hill, 1995).

Beausoleil, R. G.

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Berger, V.

A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett. 33, 2416–2418 (2008).
[Crossref] [PubMed]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
[Crossref]

Bertru, N.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Beyer, A.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Bhat, R.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412(1995).
[Crossref]

Bi, Z.-F.

Bijlani, B. J.

Borselli, M.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Bortz, M. L.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

Bowman, S.

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
[Crossref]

Bravo-Abad, J.

P. Kuo, J. Bravo-Abad, and G. Solomon, “Second-harmonic generation using 4¯ -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Brenner, M. R.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

Brevignon, M.

Bristow, A. D.

Brown, C. T. A.

Brückner, S.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Bryce, A. C.

Burek, M. J.

Calligaro, M.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

Caneau, C.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412(1995).
[Crossref]

Carlin, A. M.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

Centeno, E.

J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
[Crossref]

Chak, P.

Chatterjee, S.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Chen, T.

L. Li, J. Sun, and T. Chen, “Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators,” IEEE Photon. Technol. Lett. 23, 465–467 (2011).
[Crossref]

Claudon, J.

Condon, N.

Coquillat, D.

J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
[Crossref]

Cornet, C.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Curic, D.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

De Rossi, A.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

Debray, J. P.

Dehoff, R.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

dos Santos, L. F.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Döscher, H.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Ducci, S.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39, 3062–3065 (2014).
[Crossref] [PubMed]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

Duchesne, D.

Dumeige, Y.

Y. Dumeige, “Miniaturization of Fresnel phase matching using a side-coupled integrated spaced sequence of resonators (SCISSOR),” Opt. Lett. 32, 3438–3440 (2007).
[Crossref] [PubMed]

Y. Dumeige and P. Féron, “Second-harmonic generation using tailored whispering gallery modes,” Phys. Rev. A 76, 035803 (2007).
[Crossref]

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Durand, O.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Ebrahimzadeh, M.

Eddy, C.

Elias, G.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Emerson, R. M.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

Eyres, L. A.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

Fang, W.

Favero, I.

Fejer, M.

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

Fejer, M. M.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
[Crossref]

J. R. Kurz, X. P. Xie, and M. M. Fejer, “Odd waveguide mode quasi-phase matching with angled and staggered gratings,” Opt. Lett. 27, 1445–1447 (2002).
[Crossref]

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

Féron, P.

Y. Dumeige and P. Féron, “Second-harmonic generation using tailored whispering gallery modes,” Phys. Rev. A 76, 035803 (2007).
[Crossref]

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
[Crossref]

Fischer, D.

Fong, K. Y.

Forget, N.

Franzbach, D. J.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Fraser, H.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

Freitas, J.

Fu, K.-M. C.

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Furukawa, Y.

H. Yonezu, Y. Furukawa, and A. Wakahara, “III–V epitaxy on Si for photonics applications,” J. Cryst. Growth 310, 4757–4762 (2008).
[Crossref]

Gérard, J.-M.

Gibbons, J. F.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

Grassman, T. J.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

Grosse, F.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Guo, W.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Guo, X.

Gwilliam, R. M.

Haïdar, R.

Han, J.

Hannappel, T.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Harmand, J. C.

Harris, J. S.

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
[Crossref]

Hashemi, H.

Hatami, F.

Helmy, A. S.

Hite, J.

Höhn, C.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Holmes, B. M.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011).
[Crossref]

Hossain, N.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Hoyt, J. L.

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

Hryciw, A. C.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

Huang, I.-C.

Hutchings, D. C.

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

Ito, R.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183–192 (2001).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[Crossref]

Iyer, R.

Jayakumar, H.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Johnson, S. G.

Jung, H.

Khurgin, J.

J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B 38, 4056–4066 (1988).
[Crossref]

Kitamoto, A.

Kleckner, T. C.

Kleinschmidt, P.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Koh, S.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183–192 (2001).
[Crossref]

Kondo, T.

T. Matsushita, T. Yamamoto, and T. Kondo, “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46, L408 (2007).
[Crossref]

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183–192 (2001).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[Crossref]

Koza, M. A.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412(1995).
[Crossref]

Kroemer, H.

H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
[Crossref]

Kub, F.

Kunert, B.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

I. Németh, B. Kunert, W. Stolz, and K. Volz, “Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions,” J. Cryst. Growth 310, 1595–1601 (2008).
[Crossref]

Kuo, P.

P. Kuo, J. Bravo-Abad, and G. Solomon, “Second-harmonic generation using 4¯ -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Kuo, P. S.

Kupecek, P.

Kurz, J. R.

Lake, D. P.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Lallier, E.

Lanco, L.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

Lange, C.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Largeau, L.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

Le Corre, A.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Le Vassor d’Yerville, M.

J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
[Crossref]

Lehoux, J.

Lemaître, A.

Leo, G.

Letoublon, A.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

Létoublon, A.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Levenson, A.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Levenson, J. A.

Li, L.

L. Li, J. Sun, and T. Chen, “Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators,” IEEE Photon. Technol. Lett. 23, 465–467 (2011).
[Crossref]

Liebich, S.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Lin, A. C.

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
[Crossref]

Lin, Z.

Loncar, M.

Loualiche, S.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Lovering, D. J.

Lu, J.

Maleki, L.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

Mariani, S.

Marie, X.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Marsh, J. H.

Mastro, M.

Matsko, A. B.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

Matsushita, T.

T. Matsushita, T. Yamamoto, and T. Kondo, “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46, L408 (2007).
[Crossref]

May, M. M.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Mériadec, C.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Meyer, J.

Micha, J. S.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Mills, M.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

Mitchell, M.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

Monnier, P.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Moutzouris, K.

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
[Crossref]

Németh, I.

I. Németh, B. Kunert, W. Stolz, and K. Volz, “Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions,” J. Cryst. Growth 310, 1595–1601 (2008).
[Crossref]

Nguyen Thanh, T.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Nmeth, I.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

O’Connor, S.

Ohlmann, J.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

Ohshima, N.

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
[Crossref]

Ortiz, V.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

Painter, O.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Palacios, T.

Patriarche, G.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

Pernice, W.

Perrin, M.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Ping Wang, Y.

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

Ponchet, A.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Rajagopalan, S.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

Rao, S. V.

Ringel, S. A.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

Rivoire, K.

Robert, C.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Rodriguez, A. W.

Rohel, T.

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

Romanyuk, O.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Rosencher, E.

R. Haïdar, N. Forget, P. Kupecek, and E. Rosencher, “Fresnel phase matching for three-wave mixing in isotropic semiconductors,” J. Opt. Soc. Am. B 21, 1522–1534 (2004).
[Crossref]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
[Crossref]

Ryu, K. K.

Sagnes, I.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Samonji, K.

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
[Crossref]

Santori, C.

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Savchenkov, A. A.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

Scaccabarozzi, L.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
[Crossref]

Schuck, C.

Shahabadi, M.

Shambat, G.

Shiraki, Y.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183–192 (2001).
[Crossref]

Shirane, M.

Shoji, I.

Sigal, I.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011).
[Crossref]

Simonneau, C.

Sipe, J. E.

Smirl, A. L.

Solomon, G.

P. Kuo, J. Bravo-Abad, and G. Solomon, “Second-harmonic generation using 4¯ -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Solomon, G. S.

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Stanley, C. R.

Stark, P.

Stoll, R.

Stolz, W.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

I. Németh, B. Kunert, W. Stolz, and K. Volz, “Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions,” J. Cryst. Growth 310, 1595–1601 (2008).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Sun, J.

L. Li, J. Sun, and T. Chen, “Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators,” IEEE Photon. Technol. Lett. 23, 465–467 (2011).
[Crossref]

Supplie, O.

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Sweeney, S. J.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Takagi, Y.

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
[Crossref]

Talebi, N.

Tang, H. X.

Torres, J.

J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
[Crossref]

Tsuji, T.

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
[Crossref]

Twigg, M.

Unocic, R.

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

van Driel, H. M.

Venkataraman, V.

Vidakovic, P.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidaković, D. J. Lovering, and J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 22, 1775–1777 (1997).
[Crossref]

Volz, K.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

I. Németh, B. Kunert, W. Stolz, and K. Volz, “Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions,” J. Cryst. Growth 310, 1595–1601 (2008).
[Crossref]

Vuckovic, J.

Vurgaftman, I.

Wagner, S. J.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011).
[Crossref]

Wakahara, A.

H. Yonezu, Y. Furukawa, and A. Wakahara, “III–V epitaxy on Si for photonics applications,” J. Cryst. Growth 310, 4757–4762 (2008).
[Crossref]

Wang, C.

Wang, K.-M.

Witte, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

Xie, X. P.

Xiong, C.

Yamamoto, T.

T. Matsushita, T. Yamamoto, and T. Kondo, “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46, L408 (2007).
[Crossref]

Yang, Z.

Yonezu, H.

H. Yonezu, Y. Furukawa, and A. Wakahara, “III–V epitaxy on Si for photonics applications,” J. Cryst. Growth 310, 4757–4762 (2008).
[Crossref]

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
[Crossref]

Yoo, S. J. B.

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412(1995).
[Crossref]

Younis, U.

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011).
[Crossref]

Yu, X.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
[Crossref]

Zeaiter, K.

Zimprich, M.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

Appl. Phys. Lett. (8)

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004).
[Crossref]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding,” Appl. Phys. Lett. 66, 3410–3412(1995).
[Crossref]

M. J. Angell, R. M. Emerson, J. L. Hoyt, J. F. Gibbons, L. A. Eyres, M. L. Bortz, and M. M. Fejer, “Growth of alternating 〈100〉/〈1111〉 oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates,” Appl. Phys. Lett. 64, 3107–3109 (1994).
[Crossref]

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99, 071109 (2011).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104, 141104 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” IEEE J. Quantum Electron. 47, 834–840 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Li, J. Sun, and T. Chen, “Second-harmonic generation in AlGaAs/AlxOy artificial birefringent microring resonators,” IEEE Photon. Technol. Lett. 23, 465–467 (2011).
[Crossref]

J. Appl. Cryst. (1)

Y. Ping Wang, A. Letoublon, T. Nguyen Thanh, M. Bahri, L. Largeau, G. Patriarche, C. Cornet, N. Bertru, A. Le Corre, and O. Durand, “Quantitative evaluation of microtwins and antiphase defects in GaP/Si nanolayers for a III–V photonics platform on silicon using a laboratory X-ray diffraction setup,” J. Appl. Cryst. 48, 702–710 (2015).
[Crossref]

J. Appl. Phys. (1)

T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J. S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, “Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon,” J. Appl. Phys. 112, 053521 (2012).
[Crossref]

J. Cryst. Growth (8)

H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth 81, 193–204 (1987).
[Crossref]

Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima, “Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (1 0 0) substrates,” J. Cryst. Growth 187, 42–50 (1998).
[Crossref]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nmeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315, 37–47 (2011).
[Crossref]

H. Yonezu, Y. Furukawa, and A. Wakahara, “III–V epitaxy on Si for photonics applications,” J. Cryst. Growth 310, 4757–4762 (2008).
[Crossref]

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth 301–302, 163–167 (2007).
[Crossref]

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183–192 (2001).
[Crossref]

I. Németh, B. Kunert, W. Stolz, and K. Volz, “Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions,” J. Cryst. Growth 310, 1595–1601 (2008).
[Crossref]

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

T. Matsushita, T. Yamamoto, and T. Kondo, “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46, L408 (2007).
[Crossref]

Nat. Commun. (1)

P. Kuo, J. Bravo-Abad, and G. Solomon, “Second-harmonic generation using 4¯ -quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Nature (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463 (1998).
[Crossref]

Opt. Express (6)

Opt. Lett. (12)

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39, 3062–3065 (2014).
[Crossref] [PubMed]

P. S. Kuo, W. Fang, and G. S. Solomon, “4¯ -quasi-phase-matched interactions in GaAs microdisk cavities,” Opt. Lett. 34, 3580–3582 (2009).
[Crossref] [PubMed]

Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007).
[Crossref] [PubMed]

Z. Yang and J. E. Sipe, “Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators,” Opt. Lett. 32, 3296–3298 (2007).
[Crossref] [PubMed]

Y. Dumeige, “Miniaturization of Fresnel phase matching using a side-coupled integrated spaced sequence of resonators (SCISSOR),” Opt. Lett. 32, 3438–3440 (2007).
[Crossref] [PubMed]

A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33, 2026–2028 (2008).
[Crossref] [PubMed]

A. Andronico, J. Claudon, J.-M. Gérard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett. 33, 2416–2418 (2008).
[Crossref] [PubMed]

C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidaković, D. J. Lovering, and J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 22, 1775–1777 (1997).
[Crossref]

E. Lallier, M. Brevignon, and J. Lehoux, “Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1511–1513 (1998).
[Crossref]

A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs–AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[Crossref]

J. R. Kurz, X. P. Xie, and M. M. Fejer, “Odd waveguide mode quasi-phase matching with angled and staggered gratings,” Opt. Lett. 27, 1445–1447 (2002).
[Crossref]

K. Zeaiter, D. C. Hutchings, R. M. Gwilliam, K. Moutzouris, S. V. Rao, and M. Ebrahimzadeh, “Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing,” Opt. Lett. 28, 911–913 (2003).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (2)

Y. Dumeige and P. Féron, “Second-harmonic generation using tailored whispering gallery modes,” Phys. Rev. A 76, 035803 (2007).
[Crossref]

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006).
[Crossref]

Phys. Rev. B (4)

J. Torres, M. Le Vassor d’Yerville, D. Coquillat, E. Centeno, and J. P. Albert, “Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs,” Phys. Rev. B 71, 195326 (2005).
[Crossref]

J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B 38, 4056–4066 (1988).
[Crossref]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

O. Supplie, S. Brückner, O. Romanyuk, H. Döscher, C. Höhn, M. M. May, P. Kleinschmidt, F. Grosse, and T. Hannappel, “Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy an ab initio density functional theory,” Phys. Rev. B 90, 235301 (2014).
[Crossref]

Phys. Rev. Lett. (2)

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

Other (2)

T. J. Grassman, M. R. Brenner, A. M. Carlin, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Toward metamorphic multijunction GaAsP/Si photovoltaics grown on optimized GaP/Si virtual substrates using anion-graded GaAsyP1−y buffers,” in “2009 34th IEEE,Photovoltaic Specialists Conference (PVSC)” (2009), pp. 002016–002021.

M. Bass, Handbook of Optics (McGraw Hill, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 GaP epitaxial layer grown on a Si substrate a) Cross-view transmission electron microscopy, APDs appear in dark. b) Contrast threshold-based image (1.2 μm × 0.8 μm) deduced from a plan-view transmission electron microscopy. White and black area correspond to opposite polarity domains.
Fig. 2
Fig. 2 a) Three-dimensional view of the GaP microdisk. APD are shown in black. b) Sketch of coupling between the GaP microdisk and the tapered fiber for the fundamental field where 1 − |tf|2 is the power coupling coefficient. The SH field is extracted from the microcavity by the same port. c) Electric field vertical distributions for modal PM. The lowest order mode is excited at the fundamental frequency (f in green dotted line) whereas SH field is generated in the first antisymmetric mode (SH in red full line). d) f ( z ) Z ˜ SH Z ˜ f 2 distribution deduced from the fields given in c) for a constant polarity GaP layer. e) The same quantity is represented for a GaP layer with optimized APD.
Fig. 3
Fig. 3 a) Influence of the height of the APD on the SHG efficiency for a microdisk of radius R = 2.242 μm with a thickness e = 400 nm. The fundamental wavelength is λf = 1.536 μm and mf = 20. An average polarity close to zero leads to an efficient SHG when the APD propagate on half the height of the microdisk. b) Maximum conversion efficiency (obtained for ξ = 0.5) calculated for a set of APD distributions featuring different mean polarities and correlation lengths (between 10 and 500 nm), plotted as a function of PAPD. Filled circles correspond to calculations given in a).
Fig. 4
Fig. 4 Overview of the disk thicknesses and fundamental wavelengths leading to an efficient SHG in GaP microdisks. The solid lines of different colors represent the different thicknesses and the dotted lines the different fundamental azimuthal numbers mf. Disk radii are adjusted for each configuration to obtain QPM and double resonance of the modes. They range from 1 μm for small mf to 15 μm for large ones. The grey block corresponds to the QPM scheme presented in this work for which the microdisks include APDs in the first half of their thickness.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = P in | K ˜ + + K ˜ | 2 α SH 2 ( 1 | t SH | 2 ) ( 1 α SH | t SH | ) 2 [ α f 2 ( 1 | t f | 2 ) ( 1 α f | t f | ) 2 ] 2 ,
K ˜ ± = ± 1 2 ε 0 ω SH n f 4 e / 2 e / 2 Z ˜ SH Z ˜ f 2 d z 0 R 0 2 π d ( z , r , θ ) e i ( Δ m ± 2 ) θ r ψ ˜ SH ( m f r ψ ˜ f ± d ψ ˜ f d r ) 2 d r d θ
d ( z , r , θ ) = { d 14 if e / 2 + e APD < z e / 2 ± d 14 if e / 2 z e / 2 + e APD ,
K ˜ ± e / 2 e / 2 f ( z ) Z ˜ SH Z ˜ f 2 d z ,

Metrics