Abstract

An auto-referenced interferometric method for calibrating phase modulation of parallel-aligned liquid crystal (PAL) spatial light modulators (SLM) is described. The method is experimentally straightforward, robust, and requires solely of a collimated beam, with no need of additional optics. This method uses the SLM itself to create a tilted plane wave and a reference wave which mutually interfere. These waves are codified by means of a binary diffraction grating and a uniformly distributed gray level area (piston) into the SLM surface. Phase shift for each gray level addressed to the piston section can then be evaluated. Phase modulation on the SLM can also be retrieved with the proposed method over spatially resolved portions of the surface. Phase information obtained with this novel method is compared to other well established calibration procedures, requiring extra elements and more elaborated optical set-ups. The results show a good agreement with previous methods. The advantages of the new method include high mechanical stability, faster performance, and a significantly easier practical implementation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays

Joaquín Otón, Pierre Ambs, María S. Millán, and Elisabet Pérez-Cabré
Appl. Opt. 46(23) 5667-5679 (2007)

A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators

Long Teng, Mike Pivnenko, Brian Robertson, Rong Zhang, and Daping Chu
Opt. Express 22(21) 26392-26402 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in W. Osten, ed., Optical Imaging and Metrology (Wiley-VCH, 2012), Chap. 1.
  2. M. Kujawinska, R. Porras-Aguilar, and W. Zaperty, “LCOS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19, 445–458 (2012).
  3. P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
    [Crossref] [PubMed]
  4. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
    [Crossref] [PubMed]
  5. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009).
    [Crossref] [PubMed]
  6. E. J. Fernández, P. M. Prieto, and P. Artal, “Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations,” J. Opt. Soc. Am. A 27(11), A48–A55 (2010).
    [Crossref] [PubMed]
  7. C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, P. Artal, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35(2), 196–198 (2010).
    [Crossref] [PubMed]
  8. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
    [Crossref] [PubMed]
  9. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34(19), 2988–2990 (2009).
    [Crossref] [PubMed]
  10. A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
    [Crossref]
  11. L. Lobato, A. Márquez, A. Lizana, I. Moreno, C. Iemmi, and J. Campos, “Characterization of a parallel aligned liquid cristal on silicon and its application on a Shack-Hartmann sensor,” Proc. SPIE 7797, 77970Q (2010).
    [Crossref]
  12. J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
    [Crossref] [PubMed]
  13. Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33(9), 3018–3022 (1994).
    [Crossref]
  14. D. Engström, M. Persson, J. Bengtsson, and M. Goksör, “Calibration of spatial light modulators suffering from spatially varying phase response,” Opt. Express 21(13), 16086–16103 (2013).
    [Crossref] [PubMed]
  15. A. Serrano-Heredia, P. Purwosumarto, and F. T. S. Yu, “Measurement of the phase modulation in liquid crystal television based on the fractional-Talbot effect,” Opt. Eng. 35(9), 2680–2684 (1996).
    [Crossref]
  16. A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display,” Appl. Opt. 47(23), 4267–4274 (2008).
    [Crossref] [PubMed]
  17. F. J. Martínez, A. Márquez, S. Gallego, M. Ortuño, J. Francés, A. Beléndez, and I. Pascual, “Averaged Stokes polarimetry applied to evaluate retardance and flicker in PA-LCoS devices,” Opt. Express 22(12), 15064–15074 (2014).
    [Crossref] [PubMed]
  18. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43(35), 6400–6406 (2004).
    [Crossref] [PubMed]
  19. S. Reichelt, “Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators,” Appl. Opt. 52(12), 2610–2618 (2013).
    [Crossref] [PubMed]
  20. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34(23), 5133–5139 (1995).
    [Crossref] [PubMed]
  21. C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48(20), 4003–4008 (2009).
    [Crossref] [PubMed]
  22. http://holoeye.com/spatial-light-modulators/slm-pluto-phase-only/ : Phase Cam Manual.
  23. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16(21), 16711–16722 (2008).
    [Crossref] [PubMed]

2014 (2)

2013 (2)

2012 (1)

M. Kujawinska, R. Porras-Aguilar, and W. Zaperty, “LCOS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19, 445–458 (2012).

2010 (3)

2009 (4)

2008 (3)

2004 (2)

1996 (1)

A. Serrano-Heredia, P. Purwosumarto, and F. T. S. Yu, “Measurement of the phase modulation in liquid crystal television based on the fractional-Talbot effect,” Opt. Eng. 35(9), 2680–2684 (1996).
[Crossref]

1995 (1)

1994 (1)

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33(9), 3018–3022 (1994).
[Crossref]

1990 (1)

Arsenault, H. H.

Artal, P.

Beléndez, A.

Bengtsson, J.

Bergeron, A.

Bernet, S.

Campos, J.

Cánovas, C.

Cohn, R. W.

del Mar Sánchez-López, M.

Doucet, M.

Engström, D.

Fernández, E.

Fernández, E. J.

Francés, J.

Gagnon, F.

Gallego, S.

García-Martínez, P.

Gauvin, J.

Gingras, D.

Goksör, M.

Haist, T.

A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Hermeschmidt, A.

A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Iemmi, C.

Kohler, C.

Krüger, S.

A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Kujawinska, M.

M. Kujawinska, R. Porras-Aguilar, and W. Zaperty, “LCOS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19, 445–458 (2012).

Leaird, D. E.

Lizana, A.

Lobato, L.

L. Lobato, A. Márquez, A. Lizana, I. Moreno, C. Iemmi, and J. Campos, “Characterization of a parallel aligned liquid cristal on silicon and its application on a Shack-Hartmann sensor,” Proc. SPIE 7797, 77970Q (2010).
[Crossref]

Lu, G.

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33(9), 3018–3022 (1994).
[Crossref]

Manzanera, S.

Márquez, A.

Martínez, F. J.

Martínez, J. L.

Maurer, C.

McIntyre, T. J.

Mira, A.

Moreno, I.

Ortuño, M.

Osten, W.

C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48(20), 4003–4008 (2009).
[Crossref] [PubMed]

A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Pascual, I.

Patel, J. S.

Persson, M.

Porras-Aguilar, R.

M. Kujawinska, R. Porras-Aguilar, and W. Zaperty, “LCOS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19, 445–458 (2012).

Prieto, P.

Prieto, P. M.

Purwosumarto, P.

A. Serrano-Heredia, P. Purwosumarto, and F. T. S. Yu, “Measurement of the phase modulation in liquid crystal television based on the fractional-Talbot effect,” Opt. Eng. 35(9), 2680–2684 (1996).
[Crossref]

Reichelt, S.

Ritsch-Marte, M.

Serrano-Heredia, A.

A. Serrano-Heredia, P. Purwosumarto, and F. T. S. Yu, “Measurement of the phase modulation in liquid crystal television based on the fractional-Talbot effect,” Opt. Eng. 35(9), 2680–2684 (1996).
[Crossref]

Vargas, A.

Warber, M.

A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Weiner, A. M.

Wullert, J. R.

Xun, X.

Yu, F. T. S.

A. Serrano-Heredia, P. Purwosumarto, and F. T. S. Yu, “Measurement of the phase modulation in liquid crystal television based on the fractional-Talbot effect,” Opt. Eng. 35(9), 2680–2684 (1996).
[Crossref]

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33(9), 3018–3022 (1994).
[Crossref]

Yzuel, M. J.

Zaperty, W.

M. Kujawinska, R. Porras-Aguilar, and W. Zaperty, “LCOS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19, 445–458 (2012).

Zhang, F.

Zhang, Z.

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33(9), 3018–3022 (1994).
[Crossref]

Zwick, S.

A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Appl. Opt. (5)

J. Opt. Soc. Am. A (1)

Metrol. Meas. Syst. (1)

M. Kujawinska, R. Porras-Aguilar, and W. Zaperty, “LCOS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19, 445–458 (2012).

Opt. Eng. (2)

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33(9), 3018–3022 (1994).
[Crossref]

A. Serrano-Heredia, P. Purwosumarto, and F. T. S. Yu, “Measurement of the phase modulation in liquid crystal television based on the fractional-Talbot effect,” Opt. Eng. 35(9), 2680–2684 (1996).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (2)

A. Hermeschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

L. Lobato, A. Márquez, A. Lizana, I. Moreno, C. Iemmi, and J. Campos, “Characterization of a parallel aligned liquid cristal on silicon and its application on a Shack-Hartmann sensor,” Proc. SPIE 7797, 77970Q (2010).
[Crossref]

Other (2)

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in W. Osten, ed., Optical Imaging and Metrology (Wiley-VCH, 2012), Chap. 1.

http://holoeye.com/spatial-light-modulators/slm-pluto-phase-only/ : Phase Cam Manual.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Diagram of the phase calibration system. OBJ is a microscope objective, PH stands for a pinhole, L is a collimating lens and P is a polarizer. The dotted line represents the optical axis before the SLM. Darker green line after the SLM represents the non-deflected light reflected back from the uniform part of the SLM. Light green line represents one of the tilted ‘plane’ waves ( + 1 order, for example) reflected back from the part of the SLM encoding the binary grating (the −1 order is not depicted since it is deflected to the left and interferes nowhere). This wave interferes with the other wave at the camera plane creating interference fringes.
Fig. 2
Fig. 2 Examples of addressed phase maps (left) and corresponding experimental fringe patterns (right) for different piston gray levels: (a) 0, (b) 64, (c) 128, and (d) 255. A red line is added to evidence fringe displacement.
Fig. 3
Fig. 3 Panel (a): Modulus of the discrete Fourier transform (in normalized units) for a given fringe pattern after subtracting the mean intensity. Panel (b): Phase modulation (degrees) relative to gray level 0, obtained from the argument of the right side impulse of the Fourier Transform.
Fig. 4
Fig. 4 Panel (a): preset (linear) gamma curve (red) and phase (degrees) linearization gamma curve (green). NOTE: Gamma values are integers inside a range dependent on the SLM driver configuration and should only be used to compare shapes. Panel (b): Experimentally determined phase modulation curves in degrees before (red) and after (green) linearization.
Fig. 5
Fig. 5 Comparison of the piston/grating method with previously described methods for SLM calibration. (a) Phase modulation curves estimated (degrees) with a two-beam interferometric scheme (blue), a diffraction grating-based procedure (red) and the new method (green). (b) Transmitted intensity between crossed polarizers (circles) compared to the cosine of the induced phase estimated with the new method (line).
Fig. 6
Fig. 6 (a) Example of pupil array pattern surrounded by random phase values sent to the SLM. (b) Mean intensity pattern obtained by averaging the recorded images for a set of phase patterns.
Fig. 7
Fig. 7 (a) Example of spatially-resolved calibration pattern. (b) Corresponding experimental fringe image. The green square represents the selected measurement area at the camera plane. This interest region is changed each time to evaluate the phase modulation at different regions of the SLM. This way, a single column grating at the SLM enables for measuring phase at different regions.
Fig. 8
Fig. 8 Spatial differences in phase modulation depth with respect to the spatial average. Values were obtained in 128x128-pixel cells and interpolated with cubic splines to produce a smooth profile.
Fig. 9
Fig. 9 Fitting between cosines of the phase retrieved from intensity method both experimentally (circles) and fitted (red lines) and the spatially resolved piston/grating method (blue lines) for different fringe-production zones of the SLM. Each zone is depicted at the right topmost part of each graph.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I( x,g )= I 0 +ΔI·cos( 2π·x /P + ϕ 0 +Δϕ( g ) ),
P twobeams λ· f d =18μm.
P grating =N·s128μm,
f( x,y,g )=cos( Δ ϕ 255 ( x,y )g/ 255 + ϕ 0 ( x,y ) )

Metrics