Abstract

Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and −1316 nm/RIU, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct core structuring of microstructured optical fibers using focused ion beam milling

Stephen C. Warren-Smith, Ricardo M. André, Christopher Perrella, Jan Dellith, and Hartmut Bartelt
Opt. Express 24(1) 378-387 (2016)

Dual parameter fiber-integrated sensor for refractive index and temperature measurement based on Fabry–Perot micro-resonators

Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Appl. Opt. 58(8) 2076-2080 (2019)

Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating

Pouneh Saffari, Zhijun Yan, Kaiming Zhou, and Lin Zhang
Appl. Opt. 51(20) 4715-4721 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Santos and F. Farahi, Handbook of Optical Sensors (CRC Press, 2014).
  2. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362(4), 349–373 (1998).
    [Crossref]
  3. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  4. Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
    [Crossref] [PubMed]
  5. T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photonics Technol. Lett. 2(3), 227–228 (1990).
    [Crossref]
  6. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10(10), 1376–1379 (1992).
    [Crossref]
  7. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
    [Crossref] [PubMed]
  8. Y. Rao, B. Xu, Z.-L. Ran, and Y. Gong, “Micro extrinsic fiber-optic Fabry-Perot interferometric sensor based on erbium- and boron- doped fibers,” Chin. Phys. Lett. 25, 024208 (2010).
  9. P. Betts, “Bragg grating Fabry-Perot interferometer with variable finesse,” Opt. Eng. 43(5), 1258–1259 (2004).
    [Crossref]
  10. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
    [Crossref]
  11. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [Crossref] [PubMed]
  12. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  13. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  14. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  15. L. Yuan, T. Wei, Q. Han, H. Wang, J. Huang, L. Jiang, and H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Opt. Lett. 37(21), 4489–4491 (2012).
    [Crossref] [PubMed]
  16. A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” J. Micromech. Microeng. 18(3), 035005 (2008).
    [Crossref]
  17. D. N. Wang, “Micro-engineered optical fiber sensors fabricated by femtosecond laser micromachining,” in Imaging and Applied Optics Technical Digest (Optical Society of America, 2012).
  18. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [Crossref] [PubMed]
  19. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
    [Crossref] [PubMed]
  20. R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, “Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications,” Opt. Express 22(11), 13102–13108 (2014).
    [Crossref] [PubMed]
  21. T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
    [Crossref] [PubMed]
  22. L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
    [Crossref]
  23. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [Crossref] [PubMed]
  24. S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, H. Bartelt, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
    [Crossref] [PubMed]
  25. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
    [Crossref]
  26. D. A. Pereira, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
    [Crossref]
  27. A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17(11), 2397–2399 (2005).
    [Crossref]
  28. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005).
    [Crossref] [PubMed]
  29. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  30. T. Wang and M. Wang, “Fabry–Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
    [Crossref]
  31. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, V. V. Tuchin, ed. (International Society for Optics and Photonics, 2003), pp. 393–395.
    [Crossref]
  32. C. A. Volkert and A. M. Minor, “Focused Ion Beam Microscopy and Micromachining,” MRS Bull. 32(05), 389–399 (2007).
    [Crossref]
  33. L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
    [Crossref] [PubMed]
  34. A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching,” Rev. Sci. Instrum. 74(8), 3679–3683 (2003).
    [Crossref]
  35. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in SPIE Astronomical Telescopes + Instrumentation, E. Atad-Ettedgui, J. Antebi, and D. Lemke, eds. (International Society for Optics and Photonics, 2006), pp. 62732K.

2016 (1)

2014 (2)

2013 (1)

2012 (4)

2011 (2)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

2010 (3)

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (4)

2007 (1)

C. A. Volkert and A. M. Minor, “Focused Ion Beam Microscopy and Micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

2006 (2)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

2005 (3)

2004 (3)

P. Betts, “Bragg grating Fabry-Perot interferometer with variable finesse,” Opt. Eng. 43(5), 1258–1259 (2004).
[Crossref]

D. A. Pereira, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

2003 (1)

A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching,” Rev. Sci. Instrum. 74(8), 3679–3683 (2003).
[Crossref]

1998 (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362(4), 349–373 (1998).
[Crossref]

1992 (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10(10), 1376–1379 (1992).
[Crossref]

1990 (1)

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photonics Technol. Lett. 2(3), 227–228 (1990).
[Crossref]

Alameh, K.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

André, R. M.

Araujo, L.

Atkins, R. A.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10(10), 1376–1379 (1992).
[Crossref]

Bang, O.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Bartelt, H.

Becker, M.

Bennion, I.

Betts, P.

P. Betts, “Bragg grating Fabry-Perot interferometer with variable finesse,” Opt. Eng. 43(5), 1258–1259 (2004).
[Crossref]

Bouwmans, G.

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, X.

Chiang, K. S.

Cooper, K. L.

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

de Man, S.

A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” J. Micromech. Microeng. 18(3), 035005 (2008).
[Crossref]

Dellith, J.

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Donlagic, D.

Dugan, M.

A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” J. Micromech. Microeng. 18(3), 035005 (2008).
[Crossref]

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Fang, N.

A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching,” Rev. Sci. Instrum. 74(8), 3679–3683 (2003).
[Crossref]

Favero, F. C.

Feng, J.

Finazzi, V.

Frazão, O.

Gibler, W. N.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10(10), 1376–1379 (1992).
[Crossref]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Gong, Y.

Y. Rao, B. Xu, Z.-L. Ran, and Y. Gong, “Micro extrinsic fiber-optic Fabry-Perot interferometric sensor based on erbium- and boron- doped fibers,” Chin. Phys. Lett. 25, 024208 (2010).

Haber, L. H.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Han, Q.

Han, Y.

Hieftje, G. M.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362(4), 349–373 (1998).
[Crossref]

Hobbs, S. E.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362(4), 349–373 (1998).
[Crossref]

Hogg, D.

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photonics Technol. Lett. 2(3), 227–228 (1990).
[Crossref]

Hu, T.

Hu, T. Y.

Huang, J.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Iannuzzi, D.

A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” J. Micromech. Microeng. 18(3), 035005 (2008).
[Crossref]

Jiang, L.

Jin-Fei Ding,

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17(11), 2397–2399 (2005).
[Crossref]

Johnson, J. C.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Kou, J. L.

Lazarev, A.

A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching,” Rev. Sci. Instrum. 74(8), 3679–3683 (2003).
[Crossref]

Lee, C. E.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10(10), 1376–1379 (1992).
[Crossref]

Li, Y.

Liao, C. R.

Liao, X.

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Liu, W. J.

Li-Yang Shao,

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17(11), 2397–2399 (2005).
[Crossref]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Lu, Y. Q.

Luo, Q.

A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching,” Rev. Sci. Instrum. 74(8), 3679–3683 (2003).
[Crossref]

Marques, M. B.

Measures, R. M.

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photonics Technol. Lett. 2(3), 227–228 (1990).
[Crossref]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Minor, A. M.

C. A. Volkert and A. M. Minor, “Focused Ion Beam Microscopy and Micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

Nguyen, L. V.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

Pereira, D. A.

D. A. Pereira, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

Perrella, C.

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Pevec, S.

Potyrailo, R. A.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362(4), 349–373 (1998).
[Crossref]

Pruneri, V.

Ran, Z. L.

Ran, Z.-L.

Y. Rao, B. Xu, Z.-L. Ran, and Y. Gong, “Micro extrinsic fiber-optic Fabry-Perot interferometric sensor based on erbium- and boron- doped fibers,” Chin. Phys. Lett. 25, 024208 (2010).

Rao, Y.

Y. Rao, B. Xu, Z.-L. Ran, and Y. Gong, “Micro extrinsic fiber-optic Fabry-Perot interferometric sensor based on erbium- and boron- doped fibers,” Chin. Phys. Lett. 25, 024208 (2010).

Rao, Y. J.

Rothhardt, M.

Said, A. A.

A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” J. Micromech. Microeng. 18(3), 035005 (2008).
[Crossref]

Sailing He,

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17(11), 2397–2399 (2005).
[Crossref]

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Saykally, R. J.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Schaller, R. D.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Schmidt, M. A.

Shibru, H.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Talkenberg, F.

Taylor, H. F.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10(10), 1376–1379 (1992).
[Crossref]

Tsai, H.-L.

Valis, T.

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photonics Technol. Lett. 2(3), 227–228 (1990).
[Crossref]

Vasiliev, M.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

Villatoro, J.

Volkert, C. A.

C. A. Volkert and A. M. Minor, “Focused Ion Beam Microscopy and Micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

Wang, A.

Wang, C.

Wang, D. N.

Wang, F.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Wang, H.

Wang, M.

T. Wang and M. Wang, “Fabry–Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
[Crossref]

Wang, Q. J.

Wang, T.

T. Wang and M. Wang, “Fabry–Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
[Crossref]

Wang, Y.

Warren-Smith, S. C.

Wei, T.

Wieduwilt, T.

Xiao, H.

Xu, B.

Y. Rao, B. Xu, Z.-L. Ran, and Y. Gong, “Micro extrinsic fiber-optic Fabry-Perot interferometric sensor based on erbium- and boron- doped fibers,” Chin. Phys. Lett. 25, 024208 (2010).

Xu, F.

Ye, L.

Yuan, L.

Yuan, W.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Zhang, A. P.

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17(11), 2397–2399 (2005).
[Crossref]

Zhang, L.

Zhang, X.

A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching,” Rev. Sci. Instrum. 74(8), 3679–3683 (2003).
[Crossref]

Zhang, Y.

Zhou, K.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Chin. Phys. Lett. (1)

Y. Rao, B. Xu, Z.-L. Ran, and Y. Gong, “Micro extrinsic fiber-optic Fabry-Perot interferometric sensor based on erbium- and boron- doped fibers,” Chin. Phys. Lett. 25, 024208 (2010).

Fresenius J. Anal. Chem. (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362(4), 349–373 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (4)

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry-Perot strain gauge,” IEEE Photonics Technol. Lett. 2(3), 227–228 (1990).
[Crossref]

T. Wang and M. Wang, “Fabry–Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
[Crossref]

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17(11), 2397–2399 (2005).
[Crossref]

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

J. Lightwave Technol. (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10(10), 1376–1379 (1992).
[Crossref]

J. Micromech. Microeng. (1)

A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” J. Micromech. Microeng. 18(3), 035005 (2008).
[Crossref]

J. Microsc. (1)

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

MRS Bull. (1)

C. A. Volkert and A. M. Minor, “Focused Ion Beam Microscopy and Micromachining,” MRS Bull. 32(05), 389–399 (2007).
[Crossref]

Opt. Eng. (2)

D. A. Pereira, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43(2), 299–304 (2004).
[Crossref]

P. Betts, “Bragg grating Fabry-Perot interferometer with variable finesse,” Opt. Eng. 43(5), 1258–1259 (2004).
[Crossref]

Opt. Express (9)

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[Crossref] [PubMed]

Y. Wang, D. N. Wang, C. Wang, and T. Hu, “Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity,” Opt. Express 21(12), 14084–14089 (2013).
[Crossref] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[Crossref] [PubMed]

T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref] [PubMed]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref] [PubMed]

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, H. Bartelt, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, “Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications,” Opt. Express 22(11), 13102–13108 (2014).
[Crossref] [PubMed]

T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Rev. Sci. Instrum. (2)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching,” Rev. Sci. Instrum. 74(8), 3679–3683 (2003).
[Crossref]

Sens. Actuators B Chem. (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Other (4)

J. L. Santos and F. Farahi, Handbook of Optical Sensors (CRC Press, 2014).

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in SPIE Astronomical Telescopes + Instrumentation, E. Atad-Ettedgui, J. Antebi, and D. Lemke, eds. (International Society for Optics and Photonics, 2006), pp. 62732K.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, V. V. Tuchin, ed. (International Society for Optics and Photonics, 2003), pp. 393–395.
[Crossref]

D. N. Wang, “Micro-engineered optical fiber sensors fabricated by femtosecond laser micromachining,” in Imaging and Applied Optics Technical Digest (Optical Society of America, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 SEM micrographs of both Fabry-Perot cavities milled in TFTs: air-gap cavity before (a) and after sharpening (b), and double-slot silica cavity before (c) and after sharpening (d).
Fig. 2
Fig. 2 Spectral analysis of the air-gap cavity. Shown is the air-gap spectrum (a) before sharpening the tip and (b) after sharpening the tip. The optical power is normalized to the reflected power at a cleaved SMF. (c) and (d) show the respective FFTs considering a cavity refractive index of 1.
Fig. 3
Fig. 3 Schematics of the cavities related to each peak present in the FFT spectra of the air-gap cavity (a) before the tip is sharpened and (b) after the tip is sharpened.
Fig. 4
Fig. 4 Spectral analysis of the dual-slot cavity. Shown is the dual-slot spectrum (a) before sharpening the tip and (b) after sharpening the tip. The optical power is normalized to the reflected power at a cleaved SMF. (c) and (d) show the respective FFTs considering a cavity refractive index of 1.444.
Fig. 5
Fig. 5 Schematics of the cavities related to each peak present in the FFT spectra of the double-slot cavity (a) before the tip is sharpened and (b) after the tip is sharpened.
Fig. 6
Fig. 6 Temperature characterization of both structures: double-slot solid silica (⭕-red) and air-gap (●-blue) cavities. The solid silica cavity and air gap cavity sensitivities are 17.9 pm/K and 0.17 pm/K respectively.
Fig. 7
Fig. 7 FFTs of the spectra of the (a) air-gap cavity and (b) double-slot cavity when in air or dipped in ethanol.
Fig. 8
Fig. 8 SEM micrograph of the dual-cavity structure: (a) before creating the silica cavity in the tip and (b) after polishing the tip into a reflecting surface.
Fig. 9
Fig. 9 Fast Fourier transforms of the spectra from the dual cavity structure (a) before polishing the tip into a mirror and (b) after polishing and creating the final structure; (c) schematic of the cavity related to each FFT peak.
Fig. 10
Fig. 10 Temperature characterization of the dual cavity structure when in air.
Fig. 11
Fig. 11 Temperature characterization of the dual cavity structure when immersed in water.
Fig. 12
Fig. 12 Refractive index characterization in the range [1.309 - 1.321].

Tables (1)

Tables Icon

Table 1 Comparison of Fabry-Perot cavity sensitivities milled with FIB and femtosecond laser

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I( λ )= I 1 ( λ )+ I 2 ( λ )+2 I 1 ( λ ) I 2 ( λ ) cos( 2π λ OPD+π )
OPD=2 n cavity l
Δ λ 0 = λ 0 ( α TO Silica + α TE Silica )ΔT
Δ λ 0 = λ 0 ( α TO Air + α TE Silica )ΔT
( dλ dT ) Peak3 = OP D Peak1 OP D Total ( dλ dT ) Peak1 + OP D Peak2 OP D Total ( dλ dT ) Peak2
( dλ dT ) Peak3 Estimated = 55μm×1.0 55μm×1.0+65μm×1.444 ( 0.4pm/K )+ + 65μm×1.444 55μm×1.0+65μm×1.444 ( 15.8pm/K ) =10.1pm/K

Metrics