Abstract

The optical bistability (OB) and multistability (OM) in chiral molecules are investigated by placing the sample into a unidirectional ring cavity. Because of broken mirror symmetry of the effective potential, the chiral molecules have a cyclic three-level Δ-configuration structure, in which one- and two-photon transitions can coexist. We find that the OB is achievable in this system on exact one-, two- and three-photon resonance conditions but absent in the three-level Λ-type system under the two-photon resonance. Moreover, the OM and the switching between OB and OM are also realized by choosing parameters properly. Interestingly, the left- and right-handed chiral molecules exhibit different bistable and multistable behaviors. It is shown that the threshold intensity of OB is strongly dependent on the percentage of the two enantiomers in the mixture. This provides an effective approach to probe molecular chirality and to determine enantiomer excess, which may find potential application in organic chemistry, pharmacology, biochemistry, etc..

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical switching between optical bistability and multistability in a defect dielectric medium doped with a multiple quantum well nanostructure

Seyyed Hossein Asadpour, G. Solookinejad, M. Panahi, and E. Ahmadi Sangachin
Appl. Opt. 55(4) 722-727 (2016)

Optical bistability and multistability via magnetic field intensities in a solid

Hamid Reza Hamedi
Appl. Opt. 53(24) 5391-5397 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
    [Crossref]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [Crossref]
  3. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
    [Crossref]
  4. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature (London) 413, 273–276 (2001).
    [Crossref]
  5. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  6. Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [Crossref]
  7. Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
    [Crossref]
  8. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [Crossref]
  9. A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in a ring cavity,” Phys. Rev. A 28, 2569–2572 (1983).
    [Crossref]
  10. L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
    [Crossref]
  11. D. F. Walls and P. Zoller, “A coherent nonlinear mechanism for optical bistability from three level atoms,” Opt. Commun. 34, 260–264 (1980).
    [Crossref]
  12. N. Tsukada and T. Nakayama, “Optical bistability from interference between one- and two-photon transition processes,” Phys. Rev. A 25, 947–955 (1981).
    [Crossref]
  13. W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
    [Crossref] [PubMed]
  14. S. Gong, S. Du, and Z. Xu, “Optical bistability via atomic coherence,” Phys. Lett. A 226, 293–297 (1997).
    [Crossref]
  15. X. M. Hu and J. Wang, “Sideband control of optical bistability and multistability,” Phys. Lett. A 365, 253–257 (2007).
    [Crossref]
  16. H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2001).
    [Crossref]
  17. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
    [Crossref] [PubMed]
  18. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
    [Crossref]
  19. M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
    [Crossref]
  20. A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
    [Crossref]
  21. A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
    [Crossref]
  22. D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
    [Crossref]
  23. D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. 15, 55–64 (1982).
  24. D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability via amplitude and phase control of a microwave field,” Opt. Commun. 263, 111–115 (2006).
    [Crossref]
  25. J. H. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148–152 (2007).
    [Crossref]
  26. J. H. Li, X. Y. Lü, J.M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
    [Crossref]
  27. H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
    [Crossref]
  28. J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
    [Crossref]
  29. H. R. Hamedi and M. R. Mehmannavaz, “Behavior of optical bistability in multifold quantum dot molecules,” Laser Phys. 25, 025403 (2015).
    [Crossref]
  30. M. R. Mehmannavaz and H. Sattari, “A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window,” Laser Phys. Lett. 12, 025201 (2015).
    [Crossref]
  31. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
    [Crossref] [PubMed]
  32. T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
    [Crossref]
  33. H. R. Hamedi and G. Juzeliūnas, “Phase-sensitive Kerr nonlinearity for closed-loop quantum systems,” Phys. Rev. A 91, 053823 (2015).
    [Crossref]
  34. C. Hang and G. X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
    [Crossref] [PubMed]
  35. P. Král and M. Shapiro, “Cyclic population transfer in quantum systems with broken symmetry,” Phys. Rev. Lett. 87, 183002 (2001).
    [Crossref]
  36. P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
    [Crossref] [PubMed]
  37. J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
    [Crossref]
  38. J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
    [Crossref] [PubMed]
  39. P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
    [Crossref]
  40. R. G. Wooley, “Quantum theory and molecular structure,” Adv. Phys. 25, 27–52 (1976).
    [Crossref]
  41. D. C. Walker, ed., Origins of Optical Activity in Nature (Elsevier, 1979).
  42. Y. Li and C. Bruder, “Dynamic method to distinguish between left- and right-handed chiral molecules,” Phys. Rev. A 77, 015403 (2008).
    [Crossref]
  43. W. Z. Jia and L. F. Wei, “Distinguishing left- and right-handed molecules using two-step coherent pulses,” J. Phys. B 43, 185402 (2010).
    [Crossref]
  44. P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
    [Crossref]
  45. M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
    [Crossref] [PubMed]
  46. N. Ji and Y. R. Shen, “A novel spectroscopic probe for molecular chirality,” Chirality 18, 146–158 (2006).
    [Crossref] [PubMed]
  47. W. Z. Jia and L. F. Wei, “Probing molecular chirality by coherent optical absorption spectra,” Phys. Rev. A 84, 053849 (2011).
    [Crossref]
  48. L. A. Lugiato, “Theory of optical bistability,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1984).
    [Crossref]
  49. Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
    [Crossref] [PubMed]
  50. H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
    [Crossref]
  51. F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  52. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28, 1448–1450 (2003).
    [Crossref] [PubMed]
  53. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [Crossref] [PubMed]

2015 (4)

H. R. Hamedi and M. R. Mehmannavaz, “Behavior of optical bistability in multifold quantum dot molecules,” Laser Phys. 25, 025403 (2015).
[Crossref]

M. R. Mehmannavaz and H. Sattari, “A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window,” Laser Phys. Lett. 12, 025201 (2015).
[Crossref]

T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
[Crossref]

H. R. Hamedi and G. Juzeliūnas, “Phase-sensitive Kerr nonlinearity for closed-loop quantum systems,” Phys. Rev. A 91, 053823 (2015).
[Crossref]

2014 (2)

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[Crossref]

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

2011 (1)

W. Z. Jia and L. F. Wei, “Probing molecular chirality by coherent optical absorption spectra,” Phys. Rev. A 84, 053849 (2011).
[Crossref]

2010 (2)

2009 (2)

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Li and C. Bruder, “Dynamic method to distinguish between left- and right-handed chiral molecules,” Phys. Rev. A 77, 015403 (2008).
[Crossref]

2007 (3)

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[Crossref]

J. H. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148–152 (2007).
[Crossref]

X. M. Hu and J. Wang, “Sideband control of optical bistability and multistability,” Phys. Lett. A 365, 253–257 (2007).
[Crossref]

2006 (3)

J. H. Li, X. Y. Lü, J.M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[Crossref]

N. Ji and Y. R. Shen, “A novel spectroscopic probe for molecular chirality,” Chirality 18, 146–158 (2006).
[Crossref] [PubMed]

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability via amplitude and phase control of a microwave field,” Opt. Commun. 263, 111–115 (2006).
[Crossref]

2005 (3)

Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

2004 (1)

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

2003 (8)

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[Crossref] [PubMed]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[Crossref]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[Crossref]

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28, 1448–1450 (2003).
[Crossref] [PubMed]

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[Crossref] [PubMed]

P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
[Crossref]

2002 (3)

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[Crossref]

2001 (4)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[Crossref] [PubMed]

P. Král and M. Shapiro, “Cyclic population transfer in quantum systems with broken symmetry,” Phys. Rev. Lett. 87, 183002 (2001).
[Crossref]

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature (London) 413, 273–276 (2001).
[Crossref]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2001).
[Crossref]

2000 (1)

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
[Crossref] [PubMed]

1999 (1)

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

1998 (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[Crossref]

1997 (2)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

S. Gong, S. Du, and Z. Xu, “Optical bistability via atomic coherence,” Phys. Lett. A 226, 293–297 (1997).
[Crossref]

1996 (2)

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[Crossref] [PubMed]

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

1989 (1)

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

1983 (1)

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in a ring cavity,” Phys. Rev. A 28, 2569–2572 (1983).
[Crossref]

1982 (1)

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. 15, 55–64 (1982).

1981 (1)

N. Tsukada and T. Nakayama, “Optical bistability from interference between one- and two-photon transition processes,” Phys. Rev. A 25, 947–955 (1981).
[Crossref]

1980 (1)

D. F. Walls and P. Zoller, “A coherent nonlinear mechanism for optical bistability from three level atoms,” Opt. Commun. 34, 260–264 (1980).
[Crossref]

1976 (2)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

R. G. Wooley, “Quantum theory and molecular structure,” Adv. Phys. 25, 27–52 (1976).
[Crossref]

Agarwal, G. S.

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[Crossref] [PubMed]

Antón, M. A.

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

Asquini, M. L.

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Beckwitt, K.

P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
[Crossref]

Belkin, M. A.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
[Crossref] [PubMed]

Benabid, F.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Bird, D. M.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

Brambilla, M.

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

Brown, A.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[Crossref]

Bruder, C.

Y. Li and C. Bruder, “Dynamic method to distinguish between left- and right-handed chiral molecules,” Phys. Rev. A 77, 015403 (2008).
[Crossref]

Buckingham, A. D.

P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
[Crossref]

Calderón, O. G.

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[Crossref]

Cardimona, D. A.

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. 15, 55–64 (1982).

Cheng, D. C.

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability via amplitude and phase control of a microwave field,” Opt. Commun. 263, 111–115 (2006).
[Crossref]

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

Christensen, T.

T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
[Crossref]

Cohen, D.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[Crossref] [PubMed]

Couny, F.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

Du, S.

S. Gong, S. Du, and Z. Xu, “Optical bistability via atomic coherence,” Phys. Lett. A 226, 293–297 (1997).
[Crossref]

Ernst, K. H.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
[Crossref] [PubMed]

Fedotov, A. B.

Field, R. W.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

Fischer, P.

P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

Gong, S.

S. Gong, S. Du, and Z. Xu, “Optical bistability via atomic coherence,” Phys. Lett. A 226, 293–297 (1997).
[Crossref]

Gong, S. Q.

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability via amplitude and phase control of a microwave field,” Opt. Commun. 263, 111–115 (2006).
[Crossref]

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[Crossref] [PubMed]

Goorskey, D. J.

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2001).
[Crossref]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Hamedi, H. R.

H. R. Hamedi and M. R. Mehmannavaz, “Behavior of optical bistability in multifold quantum dot molecules,” Laser Phys. 25, 025403 (2015).
[Crossref]

H. R. Hamedi and G. Juzeliūnas, “Phase-sensitive Kerr nonlinearity for closed-loop quantum systems,” Phys. Rev. A 91, 053823 (2015).
[Crossref]

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[Crossref]

Hang, C.

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Harshawardhan, W.

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[Crossref] [PubMed]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Hu, X. M.

X. M. Hu and J. Wang, “Sideband control of optical bistability and multistability,” Phys. Lett. A 365, 253–257 (2007).
[Crossref]

Huang, G. X.

Huang, Q. J.

J. H. Li, X. Y. Lü, J.M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[Crossref]

Ian, H.

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Il’ichev, E.

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature (London) 413, 273–276 (2001).
[Crossref]

Jauho, A.

T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
[Crossref]

Ji, N.

N. Ji and Y. R. Shen, “A novel spectroscopic probe for molecular chirality,” Chirality 18, 146–158 (2006).
[Crossref] [PubMed]

Jia, W. Z.

W. Z. Jia and L. F. Wei, “Probing molecular chirality by coherent optical absorption spectra,” Phys. Rev. A 84, 053849 (2011).
[Crossref]

W. Z. Jia and L. F. Wei, “Distinguishing left- and right-handed molecules using two-step coherent pulses,” J. Phys. B 43, 185402 (2010).
[Crossref]

Joshi, A.

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[Crossref]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[Crossref]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[Crossref] [PubMed]

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

Juzeliunas, G.

H. R. Hamedi and G. Juzeliūnas, “Phase-sensitive Kerr nonlinearity for closed-loop quantum systems,” Phys. Rev. A 91, 053823 (2015).
[Crossref]

Khaledi-Nasab, A.

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[Crossref]

Kimble, H. J.

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in a ring cavity,” Phys. Rev. A 28, 2569–2572 (1983).
[Crossref]

Kirova, T.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Konorov, S. O.

Král, P.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[Crossref] [PubMed]

P. Král and M. Shapiro, “Cyclic population transfer in quantum systems with broken symmetry,” Phys. Rev. Lett. 87, 183002 (2001).
[Crossref]

Kulakov, T. A.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
[Crossref] [PubMed]

Lazarov, G.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

Lazoudis, A.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

Li, J. H.

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[Crossref]

J. H. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148–152 (2007).
[Crossref]

J. H. Li, X. Y. Lü, J.M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[Crossref]

Li, L.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

Li, Y.

Y. Li and C. Bruder, “Dynamic method to distinguish between left- and right-handed chiral molecules,” Phys. Rev. A 77, 015403 (2008).
[Crossref]

Light, P. S.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

Liu, C. P.

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability via amplitude and phase control of a microwave field,” Opt. Commun. 263, 111–115 (2006).
[Crossref]

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

Liu, Y.-x.

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
[Crossref] [PubMed]

Lü, X. Y.

J. H. Li, X. Y. Lü, J.M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[Crossref]

Lugiato, L. A.

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

L. A. Lugiato, “Theory of optical bistability,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1984).
[Crossref]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature (London) 413, 273–276 (2001).
[Crossref]

Luo, J.M.

J. H. Li, X. Y. Lü, J.M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[Crossref]

Lyyra, A. M.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

Magnes, J.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[Crossref]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

Mehmannavaz, M. R.

H. R. Hamedi and M. R. Mehmannavaz, “Behavior of optical bistability in multifold quantum dot molecules,” Laser Phys. 25, 025403 (2015).
[Crossref]

M. R. Mehmannavaz and H. Sattari, “A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window,” Laser Phys. Lett. 12, 025201 (2015).
[Crossref]

Mortensen, N. A.

T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
[Crossref]

Nakayama, T.

N. Tsukada and T. Nakayama, “Optical bistability from interference between one- and two-photon transition processes,” Phys. Rev. A 25, 947–955 (1981).
[Crossref]

Narducci, L. M.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

Nori, F.

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
[Crossref] [PubMed]

Orozco, L. A.

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in a ring cavity,” Phys. Rev. A 28, 2569–2572 (1983).
[Crossref]

Pearce, G. J.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Qi, J.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

Raheli, A.

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[Crossref]

Raymer, M. G.

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. 15, 55–64 (1982).

Rosenberger, A. T.

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in a ring cavity,” Phys. Rev. A 28, 2569–2572 (1983).
[Crossref]

Russell, J.

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Sahrai, M.

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[Crossref]

Saldana, J.

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

Sattari, H.

M. R. Mehmannavaz and H. Sattari, “A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window,” Laser Phys. Lett. 12, 025201 (2015).
[Crossref]

Shapiro, M.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[Crossref] [PubMed]

P. Král and M. Shapiro, “Cyclic population transfer in quantum systems with broken symmetry,” Phys. Rev. Lett. 87, 183002 (2001).
[Crossref]

Shen, Y. R.

N. Ji and Y. R. Shen, “A novel spectroscopic probe for molecular chirality,” Chirality 18, 146–158 (2006).
[Crossref] [PubMed]

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
[Crossref] [PubMed]

Spano, F. C.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

St, P.

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Stroud, C. R.

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. 15, 55–64 (1982).

Sun, C.

Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
[Crossref] [PubMed]

Sun, H. C.

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Thanopulos, I.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[Crossref] [PubMed]

Tsukada, N.

N. Tsukada and T. Nakayama, “Optical bistability from interference between one- and two-photon transition processes,” Phys. Rev. A 25, 947–955 (1981).
[Crossref]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Walls, D. F.

D. F. Walls and P. Zoller, “A coherent nonlinear mechanism for optical bistability from three level atoms,” Opt. Commun. 34, 260–264 (1980).
[Crossref]

Wang, H.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[Crossref]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2001).
[Crossref]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[Crossref] [PubMed]

Wang, J.

X. M. Hu and J. Wang, “Sideband control of optical bistability and multistability,” Phys. Lett. A 365, 253–257 (2007).
[Crossref]

Wang, X.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

Wei, L.

Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
[Crossref] [PubMed]

Wei, L. F.

W. Z. Jia and L. F. Wei, “Probing molecular chirality by coherent optical absorption spectra,” Phys. Rev. A 84, 053849 (2011).
[Crossref]

W. Z. Jia and L. F. Wei, “Distinguishing left- and right-handed molecules using two-step coherent pulses,” J. Phys. B 43, 185402 (2010).
[Crossref]

Wiersma, D. S.

P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
[Crossref]

Wise, F. W.

P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
[Crossref]

Wooley, R. G.

R. G. Wooley, “Quantum theory and molecular structure,” Adv. Phys. 25, 27–52 (1976).
[Crossref]

Wu, Y.

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

Wubs, M.

T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
[Crossref]

Xiao, M.

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[Crossref]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[Crossref] [PubMed]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[Crossref]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2001).
[Crossref]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[Crossref] [PubMed]

Xu, Z.

S. Gong, S. Du, and Z. Xu, “Optical bistability via atomic coherence,” Phys. Lett. A 226, 293–297 (1997).
[Crossref]

Yan, L.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
[Crossref] [PubMed]

Yan, W.

T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
[Crossref]

Yang, W.

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[Crossref]

Yang, X. X.

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

You, J.

Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
[Crossref] [PubMed]

You, J. Q.

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Zheltikov, A. M.

Zhu, Y. F.

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Zoller, P.

D. F. Walls and P. Zoller, “A coherent nonlinear mechanism for optical bistability from three level atoms,” Opt. Commun. 34, 260–264 (1980).
[Crossref]

Adv. Phys. (1)

R. G. Wooley, “Quantum theory and molecular structure,” Adv. Phys. 25, 27–52 (1976).
[Crossref]

Appl. Phys. Lett. (1)

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94, 141103 (2009).
[Crossref]

Chirality (1)

N. Ji and Y. R. Shen, “A novel spectroscopic probe for molecular chirality,” Chirality 18, 146–158 (2006).
[Crossref] [PubMed]

J. Mod. Opt. (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[Crossref]

J. Opt. B (1)

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[Crossref]

J. Phys. (1)

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. 15, 55–64 (1982).

J. Phys. B (1)

W. Z. Jia and L. F. Wei, “Distinguishing left- and right-handed molecules using two-step coherent pulses,” J. Phys. B 43, 185402 (2010).
[Crossref]

Laser Phys. (1)

H. R. Hamedi and M. R. Mehmannavaz, “Behavior of optical bistability in multifold quantum dot molecules,” Laser Phys. 25, 025403 (2015).
[Crossref]

Laser Phys. Lett. (1)

M. R. Mehmannavaz and H. Sattari, “A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window,” Laser Phys. Lett. 12, 025201 (2015).
[Crossref]

Nature (London) (1)

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature (London) 413, 273–276 (2001).
[Crossref]

Opt. Commun. (3)

D. F. Walls and P. Zoller, “A coherent nonlinear mechanism for optical bistability from three level atoms,” Opt. Commun. 34, 260–264 (1980).
[Crossref]

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability via amplitude and phase control of a microwave field,” Opt. Commun. 263, 111–115 (2006).
[Crossref]

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (4)

A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003).
[Crossref]

D. C. Cheng, C. P. Liu, and S. Q. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004).
[Crossref]

S. Gong, S. Du, and Z. Xu, “Optical bistability via atomic coherence,” Phys. Lett. A 226, 293–297 (1997).
[Crossref]

X. M. Hu and J. Wang, “Sideband control of optical bistability and multistability,” Phys. Lett. A 365, 253–257 (2007).
[Crossref]

Phys. Rev. A (14)

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2001).
[Crossref]

N. Tsukada and T. Nakayama, “Optical bistability from interference between one- and two-photon transition processes,” Phys. Rev. A 25, 947–955 (1981).
[Crossref]

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[Crossref] [PubMed]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[Crossref]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in a ring cavity,” Phys. Rev. A 28, 2569–2572 (1983).
[Crossref]

L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, and L. M. Narducci, “Single-mode instability in optical bistability,” Phys. Rev. A 39, 1235–1252 (1989).
[Crossref]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[Crossref]

J. H. Li, X. Y. Lü, J.M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[Crossref]

H. R. Hamedi and G. Juzeliūnas, “Phase-sensitive Kerr nonlinearity for closed-loop quantum systems,” Phys. Rev. A 91, 053823 (2015).
[Crossref]

H. C. Sun, Y.-x. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

W. Z. Jia and L. F. Wei, “Probing molecular chirality by coherent optical absorption spectra,” Phys. Rev. A 84, 053849 (2011).
[Crossref]

Y. Li and C. Bruder, “Dynamic method to distinguish between left- and right-handed chiral molecules,” Phys. Rev. A 77, 015403 (2008).
[Crossref]

Phys. Rev. B (2)

T. Christensen, W. Yan, A. Jauho, M. Wubs, and N. A. Mortensen, “Kerr nonlinearity and plasmonic bistability in graphene nanoribbons,” Phys. Rev. B 92, 121407 (2015).
[Crossref]

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[Crossref]

Phys. Rev. Lett. (11)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[Crossref] [PubMed]

P. Král and M. Shapiro, “Cyclic population transfer in quantum systems with broken symmetry,” Phys. Rev. Lett. 87, 183002 (2001).
[Crossref]

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[Crossref] [PubMed]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[Crossref]

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[Crossref] [PubMed]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[Crossref] [PubMed]

P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sumfrequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91, 173901 (2003).
[Crossref]

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85, 4474–4477 (2000).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[Crossref] [PubMed]

Y.-x. Liu, J. You, L. Wei, C. Sun, and F. Nori, “Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit,” Phys. Rev. Lett. 95, 087001 (2005).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Physica D (1)

J. H. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148–152 (2007).
[Crossref]

Prog. Opt. (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Other (2)

L. A. Lugiato, “Theory of optical bistability,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1984).
[Crossref]

D. C. Walker, ed., Origins of Optical Activity in Nature (Elsevier, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The energy level structure of the Δ-type chiral molecules: (a) left-handed chiral molecules; (b) right-handed chiral molecules. The enantiomers are driven by three optical fields, wherein the transition |2〉L(|2〉R) |1〉L(1〉R) is driven by a strong control field while the other two transitions are coupled by two probe fields.
Fig. 2
Fig. 2 Unidirectional ring cavity with a chiral molecule sample of length L. E p I and E p T are the incident and transmitted fields, respectively. Ec is the amplitude of the control field.
Fig. 3
Fig. 3 Input-output field curves by choosing different detunings Δ under the two-photon resonance conditions for (a) left-handed chiral molecules, i.e., η(+) = 1,η(−) = 0; (b) right-handed chiral molecules, i.e., η(+) = 0,η(−) = 1. (c) Probe absorption Im(ρ31 +ρ32) of the two enantiomers as a function of the detuning Δ. The Other parameters are chosen as Ωc = 4γ,C = 100, γ21 = γ, Δ21 = 0.
Fig. 4
Fig. 4 The probe absorption Im(ρ31 +ρ32) of left-handed molecules by choosing different decay rates γ21. The other parameters are chosen as Ωc = 0,C = 100,Δ31 = Δ32 = Δ,Δ21 = 0.
Fig. 5
Fig. 5 (a,b) Input-output field curves by choosing different intensities of control field for left- and right-handed chiral molecules, respectively. (c, d) Probe absorption Im(ρ31 +ρ32) of the two enantiomers as a function of the detuning Δ by changing the strength of the control field. The other parameters are chosen as C = 100, γ21 = γ, Δ21 = 0.
Fig. 6
Fig. 6 Input-output field curves by choosing different detunings Δ32 = −Δ31 = 0 (solid line), 0.2γ (dashed line), 0.4γ (dotted line) for (a) left-handed chiral molecules; (b) right-handed chiral molecules. The other parameters are chosen as γ21 = 0.1γ, Ωc = 4γ, C = 100, Δ21 = Δ31 Δ32.
Fig. 7
Fig. 7 Input-output field curves by choosing different intensities of control field: Ωc = γ (solid line), 5γ (dashed line), 10γ (dotted line) for (a) left- and (b) right-handed chiral molecules, respectively. The other parameters are the same as those in Fig. 6 except for Δ32 = Δ31 = 0.2γ.
Fig. 8
Fig. 8 Input-output field curves by varying the ratios of the two enantiomers. The parameters are chosen as C = 100,Ωc = 4γ31 = Δ32 = 2γ21 = 0,γ21 = γ.
Fig. 9
Fig. 9 The threshold intensity versus the percentages η+ of the left-handed chiral molecules for two cases (a) Δ > 0; (b) Δ < 0. The other parameters are the same as those in Fig. 8

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

H = j = 1 3 ω j σ jj 1 2 ( j , k = 1 , j > k 3 Ω j k e i ( ν j k t + ϕ j k ) σ j k + H . c . ) ,
H I = ( Δ 21 σ 22 + Δ 31 σ 33 ) 1 2 ( Ω 32 σ 32 + Ω 31 σ 31 + Ω 21 σ 21 e i ( δ t + Φ ) + H . c . ) ,
ρ ˙ = i [ H I , ρ ] + [ j , k = 1 , j > k 3 γ j k σ j k ] ρ ,
ρ ˙ 33 = ( γ 31 + γ 32 ) ρ 33 + i 2 Ω 31 ( ρ 13 ρ 31 ) + i 2 Ω 32 ( ρ 23 ρ 32 ) , ρ ˙ 22 = γ 21 ρ 22 + γ 32 ρ 33 + i 2 Ω 21 ( ρ 12 e i Φ ρ 21 e i Φ ) + i 2 Ω 32 ( ρ 32 ρ 23 ) , ρ ˙ 12 = Γ 12 ρ 12 + i 2 Ω 21 e i Φ ( ρ 22 ρ 11 ) + i 2 Ω 31 ρ 32 i 2 Ω 32 ρ 13 , ρ ˙ 13 = Γ 13 ρ 13 + i 2 Ω 31 ( ρ 33 ρ 11 ) + i 2 Ω 21 e i Φ ρ 23 i 2 Ω 32 ρ 12 , ρ ˙ 23 = Γ 23 ρ 23 + i 2 Ω 21 e i Φ ρ 13 + i 2 Ω 32 ( ρ 33 ρ 22 ) i 2 Ω 31 ρ 21 ,
E = E 31 e i ν 31 t + E 32 e i ν 32 t + E 21 e i ν 21 t + c . c . ,
E p t + c E p z = i 2 ε 0 [ ν 31 P ( ν 31 ) + ν 32 P ( ν 32 ) ] ,
E p z = i N 2 c ε 0 [ ν 31 μ 31 ρ ˜ 31 + ν 32 μ 32 ρ ˜ 32 ] ,
E p ( L ) = E p I / T ,
E p ( 0 ) = T E p I + R E p ( L ) ,
Y = 2 X i γ ( C 1 ρ ˜ 31 + C 2 ρ ˜ 32 ) .
ρ 31 ( 1 ) = 2 i Ω p Γ 32 ρ 11 s + Ω p Ω c ρ 22 s e i Φ 4 Γ 31 Γ 32 + Ω c 2 , ρ 32 ( 1 ) = 2 i Ω p Γ 31 ρ 22 s + Ω p Ω c ρ 11 s e i Φ 4 Γ 31 Γ 32 + Ω c 2 ,
Im ( ρ 31 ( 1 ) + ρ 32 ( 1 ) ) = Ω p [ ( γ 31 + γ 32 + γ 21 ) ρ 11 s + ( γ 31 + γ 32 ) ρ 22 s Ω c ( ρ 22 s ρ 11 s ) sin Φ ] ( γ 31 + γ 32 + γ 21 ) ( γ 31 + γ 21 ) Ω c 2
Im ( ρ 31 ( 1 ) + ρ 32 ( 1 ) ) = Ω p A D + B A 2 + B 2 ,
A = ( γ 31 + γ 32 + γ 21 ) ( γ 31 + γ 21 ) + Ω c 2 4 Δ 2 , B = 2 Δ ( 2 γ 31 + γ 32 + γ 21 ) , = 2 Δ + Ω c cos Φ , D = ( γ 31 + γ 32 + γ 21 ) ρ 11 s + ( γ 31 + γ 32 ) ρ 11 s Ω c ( ρ 22 s ρ 11 s ) sin Φ .

Metrics