Abstract

We report on an integrated plasmonic ultraviolet (UV) photodetector composed of aluminum Fano-resonant heptamer nanoantennas deposited on a Gallium Nitride (GaN) active layer which is grown on a sapphire substrate to generate significant photocurrent via formation of hot electrons by nanoclusters upon the decay of nonequilibrium plasmons. Using the plasmon hybridization theory and finite-difference time-domain (FDTD) method, it is shown that the generation of hot carriers by metallic clusters illuminated by UV beam leads to a large photocurrent. The induced Fano resonance (FR) minimum across the UV spectrum allows for noticeable enhancement in the absorption of optical power yielding a plasmonic UV photodetector with a high responsivity. It is also shown that varying the thickness of the oxide layer (Al2O3) around the nanodisks (tox) in a heptamer assembly adjusted the generated photocurrent and responsivity. The proposed plasmonic structure opens new horizons for designing and fabricating efficient opto-electronics devices with high gain and responsivity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector

Zhiqiang Yang, Kang Du, Fanfan Lu, Yang Pang, Shijia Hua, Xuetao Gan, Wending Zhang, Soo Jin Chua, and Ting Mei
Photon. Res. 7(3) 294-299 (2019)

Nanoantenna coupled UV subwavelength photodetectors based on GaN

Serkan Butun, Neval A. Cinel, and Ekmel Ozbay
Opt. Express 20(3) 2649-2656 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
    [Crossref] [PubMed]
  2. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  3. J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
    [Crossref]
  4. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
    [Crossref]
  5. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [Crossref]
  6. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
    [Crossref] [PubMed]
  7. H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron. 46(2), 157–202 (2002).
    [Crossref]
  8. W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
    [Crossref]
  9. D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
    [Crossref] [PubMed]
  10. D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
    [Crossref] [PubMed]
  11. G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga₂O₃ solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express 23(10), 13554–13561 (2015).
    [Crossref] [PubMed]
  12. B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
    [Crossref] [PubMed]
  13. B. Mallampati, S. V. Nair, H. E. Ruda, and U. Philipose, “Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector,” J. Nanopart. Res. 17(4), 176 (2015).
    [Crossref]
  14. J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
    [Crossref]
  15. Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
    [Crossref]
  16. W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
    [Crossref]
  17. Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
    [Crossref] [PubMed]
  18. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  19. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
    [Crossref] [PubMed]
  20. V. S. Kortov, S. V. Zvonarev, and A. Medvedev, “Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions,” J. Lumin. 131(9), 1904–1907 (2011).
    [Crossref]
  21. Q. Xu, F. Liu, Y. Liu, W. Meng, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells,” Opt. Express 22(S2), A301–A310 (2014).
    [Crossref]
  22. J. Becker, Plasmons as Sensors (Springer, 2012).
  23. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref] [PubMed]
  24. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  25. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  26. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  27. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
    [Crossref] [PubMed]
  28. S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensing,” Plasmonics 9(6), 1447–1456 (2014).
    [Crossref]
  29. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
    [Crossref] [PubMed]
  30. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  31. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
    [Crossref] [PubMed]
  32. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
    [Crossref] [PubMed]
  33. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  34. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  35. A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold, “Quantum theory of spontaneous and simulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
    [Crossref]
  36. M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
    [Crossref] [PubMed]
  37. A. Ahmadivand, S. Golmohammadi, and N. Pala, “Fano resonances in plasmonic aluminum nanoparticle clusters for precise gas detection: ultra-sensitivity to the minor environmental refractive index perturbations,” Photon. Nanostructures 13(1), 97–105 (2015).
    [Crossref]
  38. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle-metal/oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  39. A. Ahmadivand and N. Pala, “Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka,” Plasmonics 10(4), 809–817 (2015).
    [Crossref]
  40. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref] [PubMed]
  41. K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
    [Crossref] [PubMed]
  42. A. F. M. Anwar, S. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors,” IEEE Trans. Electron Dev. 48(3), 567–572 (2001).
    [Crossref]
  43. U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of Wurtzite GaN,” J. Appl. Phys. 82(4), 1649–1655 (1997).
    [Crossref]
  44. B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
    [Crossref] [PubMed]
  45. J. G. Fossum, F. A. Lindholm, and M. A. Shibib, “The importance of surface recombination and energy-bandgap arrowing in p-n junction silicon solar cells,” IEEE Trans. Electron Dev. 26(9), 1294–1298 (1979).
    [Crossref]
  46. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
    [Crossref] [PubMed]
  47. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  48. A. M. Goodman, “Photoemission of holes and electrons from aluminum into aluminum oxide,” J. Appl. Phys. 41(5), 2176 (1970).
    [Crossref]
  49. H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B 1(2), 522–536 (1970).
    [Crossref]
  50. A. Y. C. Yu and C. A. Mead, “Characteristic of aluminum-silicon Schottky barrier diode,” Solid-State Electron. 13(2), 97–104 (1970).
    [Crossref]
  51. X. Chen, “Novel heterostructure metal-semiconductor-metal (HMSM) photodetectors with resonant cavity for filber optic communications,” Ph.D. dissertation, Drexel University, Philadelphia, PA (2002).
  52. G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
    [Crossref] [PubMed]
  53. M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
    [Crossref] [PubMed]
  54. M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
    [Crossref]
  55. B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
    [Crossref] [PubMed]
  56. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
    [Crossref] [PubMed]
  57. S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
    [Crossref] [PubMed]
  58. S. Butun, N. A. Cinel, and E. Ozbay, “Nanoantenna coupled UV subwavelength photodetectors based on GaN,” Opt. Express 20(3), 2649–2656 (2012).
    [Crossref] [PubMed]
  59. H. R. Stuart and D. G. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815 (1998).
    [Crossref]
  60. Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, and Y. Gao, “Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector,” Opt. Express 22(24), 30148–30155 (2014).
    [Crossref] [PubMed]
  61. C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurface to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
    [Crossref]
  62. K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” J. Phys. Chem. C 114(46), 19835–19839 (2010).
    [Crossref]
  63. D. K. Schroder, Semiconductor Material and Device Characterization (Wiley & Sons, 2006).
  64. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
    [Crossref] [PubMed]
  65. J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky diodes,” Appl. Phys. Lett. 81(24), 4655 (2002).
    [Crossref]
  66. Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett. 72(24), 3166 (1998).
    [Crossref]
  67. D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
    [Crossref]
  68. J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
    [Crossref]
  69. R. Quay, C. Moglestue, V. Palankovski, and S. A. Selberherr, “temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3(1), 149–155 (2000).
    [Crossref]
  70. C. M. Snowden, Semiconductor Device Modeling (Springer-Verlag, 1989).
  71. D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGrew-Hill Education, 2012).

2015 (10)

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga₂O₃ solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express 23(10), 13554–13561 (2015).
[Crossref] [PubMed]

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

B. Mallampati, S. V. Nair, H. E. Ruda, and U. Philipose, “Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector,” J. Nanopart. Res. 17(4), 176 (2015).
[Crossref]

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

A. Ahmadivand, S. Golmohammadi, and N. Pala, “Fano resonances in plasmonic aluminum nanoparticle clusters for precise gas detection: ultra-sensitivity to the minor environmental refractive index perturbations,” Photon. Nanostructures 13(1), 97–105 (2015).
[Crossref]

A. Ahmadivand and N. Pala, “Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka,” Plasmonics 10(4), 809–817 (2015).
[Crossref]

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

2014 (12)

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, and Y. Gao, “Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector,” Opt. Express 22(24), 30148–30155 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle-metal/oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Q. Xu, F. Liu, Y. Liu, W. Meng, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells,” Opt. Express 22(S2), A301–A310 (2014).
[Crossref]

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensing,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

2013 (4)

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurface to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

2012 (8)

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[Crossref] [PubMed]

S. Butun, N. A. Cinel, and E. Ozbay, “Nanoantenna coupled UV subwavelength photodetectors based on GaN,” Opt. Express 20(3), 2649–2656 (2012).
[Crossref] [PubMed]

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

2011 (6)

V. S. Kortov, S. V. Zvonarev, and A. Medvedev, “Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions,” J. Lumin. 131(9), 1904–1907 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

2010 (8)

A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold, “Quantum theory of spontaneous and simulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” J. Phys. Chem. C 114(46), 19835–19839 (2010).
[Crossref]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
[Crossref] [PubMed]

2008 (1)

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

2007 (2)

D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
[Crossref]

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

2005 (2)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

2002 (2)

H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron. 46(2), 157–202 (2002).
[Crossref]

J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky diodes,” Appl. Phys. Lett. 81(24), 4655 (2002).
[Crossref]

2001 (1)

A. F. M. Anwar, S. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors,” IEEE Trans. Electron Dev. 48(3), 567–572 (2001).
[Crossref]

2000 (1)

R. Quay, C. Moglestue, V. Palankovski, and S. A. Selberherr, “temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3(1), 149–155 (2000).
[Crossref]

1998 (2)

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett. 72(24), 3166 (1998).
[Crossref]

H. R. Stuart and D. G. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815 (1998).
[Crossref]

1997 (1)

U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of Wurtzite GaN,” J. Appl. Phys. 82(4), 1649–1655 (1997).
[Crossref]

1994 (1)

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

1979 (1)

J. G. Fossum, F. A. Lindholm, and M. A. Shibib, “The importance of surface recombination and energy-bandgap arrowing in p-n junction silicon solar cells,” IEEE Trans. Electron Dev. 26(9), 1294–1298 (1979).
[Crossref]

1970 (3)

A. M. Goodman, “Photoemission of holes and electrons from aluminum into aluminum oxide,” J. Appl. Phys. 41(5), 2176 (1970).
[Crossref]

H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B 1(2), 522–536 (1970).
[Crossref]

A. Y. C. Yu and C. A. Mead, “Characteristic of aluminum-silicon Schottky barrier diode,” Solid-State Electron. 13(2), 97–104 (1970).
[Crossref]

Adelung, R.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Ahmadivand, A.

A. Ahmadivand, S. Golmohammadi, and N. Pala, “Fano resonances in plasmonic aluminum nanoparticle clusters for precise gas detection: ultra-sensitivity to the minor environmental refractive index perturbations,” Photon. Nanostructures 13(1), 97–105 (2015).
[Crossref]

A. Ahmadivand and N. Pala, “Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka,” Plasmonics 10(4), 809–817 (2015).
[Crossref]

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensing,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

Ajayan, P. M.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Akbari, A.

Alù, A.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurface to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Anwar, A. F. M.

A. F. M. Anwar, S. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors,” IEEE Trans. Electron Dev. 48(3), 567–572 (2001).
[Crossref]

Aono, M.

K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” J. Phys. Chem. C 114(46), 19835–19839 (2010).
[Crossref]

Archambault, A.

A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold, “Quantum theory of spontaneous and simulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurface to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Arnold, C.

A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold, “Quantum theory of spontaneous and simulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Atwater, H. A.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Bach, U.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Bandic, Z. Z.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett. 72(24), 3166 (1998).
[Crossref]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bastian, B.

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Berini, P.

Bernardi, M.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Bhapkar, U. V.

U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of Wurtzite GaN,” J. Appl. Phys. 82(4), 1649–1655 (1997).
[Crossref]

Bie, Y. Q.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Brick, D.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Bridger, P. M.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett. 72(24), 3166 (1998).
[Crossref]

Brongersma, M. L.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Bur, J. A.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Burton Lewis, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Butun, S.

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Chalabi, H.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Chang, C. C.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, S. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

Chen, C.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Chen, H.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Chen, J.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Chen, Y.

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Cheng, Z.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cinel, N. A.

Cingolani, R.

H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron. 46(2), 157–202 (2002).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle-metal/oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Cui, K.

D’Aguanno, G.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurface to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Dai, J.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Dai, L.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Darcie, T. E.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Degang, Z.

D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
[Crossref]

Di Carlo, A.

H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron. 46(2), 157–202 (2002).
[Crossref]

Dongmei, D.

D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
[Crossref]

Everitt, H. O.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Fang, X.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Fang, Y.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Feng, X.

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Fischer, A.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

Fossum, J. G.

J. G. Fossum, F. A. Lindholm, and M. A. Shibib, “The importance of surface recombination and energy-bandgap arrowing in p-n junction silicon solar cells,” IEEE Trans. Electron Dev. 26(9), 1294–1298 (1979).
[Crossref]

Gao, Y.

Gaska, R.

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

Gedamu, D.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gippius, N. A.

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Goddard, W. A.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Golmohammadi, S.

A. Ahmadivand, S. Golmohammadi, and N. Pala, “Fano resonances in plasmonic aluminum nanoparticle clusters for precise gas detection: ultra-sensitivity to the minor environmental refractive index perturbations,” Photon. Nanostructures 13(1), 97–105 (2015).
[Crossref]

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensing,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

Goodman, A. M.

A. M. Goodman, “Photoemission of holes and electrons from aluminum into aluminum oxide,” J. Appl. Phys. 41(5), 2176 (1970).
[Crossref]

Gordon, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Greffet, J. J.

A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold, “Quantum theory of spontaneous and simulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Haidarschin, G.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Halas, N. J.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815 (1998).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Heshmat, B.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Hetterich, J.

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Hsueh, H. T.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

Hsueh, T. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

Hu, G. C.

Huang, D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Huang, G. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

Huang, X. M.

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

Huang, Y.

Hui, Y.

D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
[Crossref]

Hülsmann, A.

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Jang, H. W.

J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky diodes,” Appl. Phys. Lett. 81(24), 4655 (2002).
[Crossref]

Jeon, C. M.

J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky diodes,” Appl. Phys. Lett. 81(24), 4655 (2002).
[Crossref]

Jermyn, A. S.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Jiang, H.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Jiang, M.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Jiang, M. M.

Jiang, Y.

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Jinyan, W.

D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
[Crossref]

Kanter, H.

H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B 1(2), 522–536 (1970).
[Crossref]

Kaps, S.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Karg, M.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Kim, J. K.

J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky diodes,” Appl. Phys. Lett. 81(24), 4655 (2002).
[Crossref]

Kim, Y. S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

King, N. S.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Klingenstein, M.

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Knight, M. W.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Köhler, K.

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Konstantatos, G.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

Koppens, F. H. L.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Kortov, V. S.

V. S. Kortov, S. V. Zvonarev, and A. Medvedev, “Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions,” J. Lumin. 131(9), 1904–1907 (2011).
[Crossref]

Krishna, S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Kuhl, J.

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Kulkarni, V.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Kumar, I.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lan, X.

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lee, G. P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Lee, J. L.

J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky diodes,” Appl. Phys. Lett. 81(24), 4655 (2002).
[Crossref]

Lemmer, U.

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Levina, L.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

Li, D.

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Li, G.-R.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Li, H.

Li, J.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Li, Y.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Li, Z.

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Lian, T.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Liao, M.

K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” J. Phys. Chem. C 114(46), 19835–19839 (2010).
[Crossref]

Liao, Z.-M.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Lin, S.-Y.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Lindholm, F. A.

J. G. Fossum, F. A. Lindholm, and M. A. Shibib, “The importance of surface recombination and energy-bandgap arrowing in p-n junction silicon solar cells,” IEEE Trans. Electron Dev. 26(9), 1294–1298 (1979).
[Crossref]

Liu, F.

Liu, J. G.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Liu, K.

K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” J. Phys. Chem. C 114(46), 19835–19839 (2010).
[Crossref]

Liu, L.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Louie, S. G.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lupan, O.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mallampati, B.

B. Mallampati, S. V. Nair, H. E. Ruda, and U. Philipose, “Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector,” J. Nanopart. Res. 17(4), 176 (2015).
[Crossref]

Manjavacas, A.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Marquier, F.

A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold, “Quantum theory of spontaneous and simulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Masnadi-Shirazi, M.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

McBride, J. R.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

McClain, M.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

McClain, M. J.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

McGill, T. C.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett. 72(24), 3166 (1998).
[Crossref]

Mead, C. A.

A. Y. C. Yu and C. A. Mead, “Characteristic of aluminum-silicon Schottky barrier diode,” Solid-State Electron. 13(2), 97–104 (1970).
[Crossref]

Medvedev, A.

V. S. Kortov, S. V. Zvonarev, and A. Medvedev, “Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions,” J. Lumin. 131(9), 1904–1907 (2011).
[Crossref]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Meng, W.

Miao, G.

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Mickevicius, J.

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

Mishra, Y. K.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Moglestue, C.

R. Quay, C. Moglestue, V. Palankovski, and S. A. Selberherr, “temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3(1), 149–155 (2000).
[Crossref]

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Monticone, F.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurface to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Morkoc, H.

H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron. 46(2), 157–202 (2002).
[Crossref]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Mulvaney, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Mustafa, J.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Nair, S. V.

B. Mallampati, S. V. Nair, H. E. Ruda, and U. Philipose, “Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector,” J. Nanopart. Res. 17(4), 176 (2015).
[Crossref]

Narang, P.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Neaton, J. B.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Nordlander, P.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Ozbay, E.

Pahlevaninezhad, H.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Pala, N.

A. Ahmadivand and N. Pala, “Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka,” Plasmonics 10(4), 809–817 (2015).
[Crossref]

A. Ahmadivand, S. Golmohammadi, and N. Pala, “Fano resonances in plasmonic aluminum nanoparticle clusters for precise gas detection: ultra-sensitivity to the minor environmental refractive index perturbations,” Photon. Nanostructures 13(1), 97–105 (2015).
[Crossref]

Palankovski, V.

R. Quay, C. Moglestue, V. Palankovski, and S. A. Selberherr, “temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3(1), 149–155 (2000).
[Crossref]

Pang, Y.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Paul, W. C.

D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
[Crossref]

Paulowicz, I.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Philipose, U.

B. Mallampati, S. V. Nair, H. E. Ruda, and U. Philipose, “Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector,” J. Nanopart. Res. 17(4), 176 (2015).
[Crossref]

Piquette, E. C.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett. 72(24), 3166 (1998).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Qhalid Fareed, R. S.

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

Qi, Z.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Qin, Z.-X.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Quay, R.

R. Quay, C. Moglestue, V. Palankovski, and S. A. Selberherr, “temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3(1), 149–155 (2000).
[Crossref]

Reineck, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Ringe, E.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Rosenweig, J.

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Ruda, H. E.

B. Mallampati, S. V. Nair, H. E. Ruda, and U. Philipose, “Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector,” J. Nanopart. Res. 17(4), 176 (2015).
[Crossref]

Sakurai, M.

K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” J. Phys. Chem. C 114(46), 19835–19839 (2010).
[Crossref]

Sargent, E. H.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Schlather, A.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Schlather, A. E.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

Schneider, J.

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Schoen, D.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Selberherr, S. A.

R. Quay, C. Moglestue, V. Palankovski, and S. A. Selberherr, “temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3(1), 149–155 (2000).
[Crossref]

Shan, C. X.

G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga₂O₃ solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express 23(10), 13554–13561 (2015).
[Crossref] [PubMed]

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

Sharma, Y. D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shen, D. Z.

G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga₂O₃ solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express 23(10), 13554–13561 (2015).
[Crossref] [PubMed]

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

Shenoi, R. V.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shibib, M. A.

J. G. Fossum, F. A. Lindholm, and M. A. Shibib, “The importance of surface recombination and energy-bandgap arrowing in p-n junction silicon solar cells,” IEEE Trans. Electron Dev. 26(9), 1294–1298 (1979).
[Crossref]

Shur, M. S.

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of Wurtzite GaN,” J. Appl. Phys. 82(4), 1649–1655 (1997).
[Crossref]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Song, H.

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Sonnefraud, Y.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815 (1998).
[Crossref]

Su, J.

Sun, X.

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

Sundararaman, R.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Tait, R. N.

Tamulaitis, G.

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

Tiedje, T.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Tikhodeev, S. G.

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Tsang, H. K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

von Plessen, G.

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Wang, F.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Wang, S. B.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

Wang, S. P.

G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga₂O₃ solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express 23(10), 13554–13561 (2015).
[Crossref] [PubMed]

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

Wang, X.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Wang, Y.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Webster, R. T.

A. F. M. Anwar, S. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors,” IEEE Trans. Electron Dev. 48(3), 567–572 (2001).
[Crossref]

Weng, W. Y.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

Whitmire, K. H.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

Wille, S.

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Wu, K.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Wu, S.

A. F. M. Anwar, S. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors,” IEEE Trans. Electron Dev. 48(3), 567–572 (2001).
[Crossref]

Wu, Z.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Xu, J.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Xu, J. B.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, Q.

Xuan, X.

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Ye, W.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Ye, Y.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Yin, J.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Yu, A. Y. C.

A. Y. C. Yu and C. A. Mead, “Characteristic of aluminum-silicon Schottky barrier diode,” Solid-State Electron. 13(2), 97–104 (1970).
[Crossref]

Yu, D.-P.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Yu, J.

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

Yu, Y.

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Zhang, H.-Z.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Zhang, J. P.

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

Zhang, N.

Zhang, Q.

Zhang, W.

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Q. Xu, F. Liu, Y. Liu, W. Meng, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells,” Opt. Express 22(S2), A301–A310 (2014).
[Crossref]

Zhang, X.

Zhang, X. W.

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

Zhang, Y.

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Zhao, B.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Zhao, D.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

Zhao, H.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Zheng, K.

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Zhou, Y.-B.

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

Zhu, Z.

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

Zvonarev, S. V.

V. S. Kortov, S. V. Zvonarev, and A. Medvedev, “Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions,” J. Lumin. 131(9), 1904–1907 (2011).
[Crossref]

ACS Nano (3)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Adv. Mater. (5)

Y. Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, and D.-P. Yu, “Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions,” Adv. Mater. 23(5), 649–653 (2011).
[Crossref] [PubMed]

D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, “Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors,” Adv. Mater. 26(10), 1541–1550 (2014).
[Crossref] [PubMed]

D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, and G. Miao, “Realization of a high-performance GaN UV detector by nanoplasmonic enhancement,” Adv. Mater. 24(6), 845–849 (2012).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurface to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

H. R. Stuart and D. G. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815 (1998).
[Crossref]

J. Mickevicius, M. S. Shur, R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett. 87(24), 241918 (2005).
[Crossref]

J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky diodes,” Appl. Phys. Lett. 81(24), 4655 (2002).
[Crossref]

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett. 72(24), 3166 (1998).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar blind ultraviolet photodetectors by localized surface plasmon enhancement,” Appl. Phys. Lett. 106(2), 021112 (2015).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

IEEE Quantum Electron. (1)

J. Hetterich, B. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

IEEE Sel. Top. Quantum Electron. (1)

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE Sel. Top. Quantum Electron. 17(4), 996–1001 (2011).
[Crossref]

IEEE Trans. Electron Dev. (2)

A. F. M. Anwar, S. Wu, and R. T. Webster, “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors,” IEEE Trans. Electron Dev. 48(3), 567–572 (2001).
[Crossref]

J. G. Fossum, F. A. Lindholm, and M. A. Shibib, “The importance of surface recombination and energy-bandgap arrowing in p-n junction silicon solar cells,” IEEE Trans. Electron Dev. 26(9), 1294–1298 (1979).
[Crossref]

J. Appl. Phys. (2)

U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of Wurtzite GaN,” J. Appl. Phys. 82(4), 1649–1655 (1997).
[Crossref]

A. M. Goodman, “Photoemission of holes and electrons from aluminum into aluminum oxide,” J. Appl. Phys. 41(5), 2176 (1970).
[Crossref]

J. Lumin. (1)

V. S. Kortov, S. V. Zvonarev, and A. Medvedev, “Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions,” J. Lumin. 131(9), 1904–1907 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Yu, Y. Jiang, K. Zheng, Z. Zhu, X. Lan, Y. Zhang, Y. Zhang, and X. Xuan, “Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(18), 3583–3588 (2014).
[Crossref]

J. Nanopart. Res. (1)

B. Mallampati, S. V. Nair, H. E. Ruda, and U. Philipose, “Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector,” J. Nanopart. Res. 17(4), 176 (2015).
[Crossref]

J. Phys. Chem. C (1)

K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” J. Phys. Chem. C 114(46), 19835–19839 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D Appl. Phys. 46(30), 305105 (2013).
[Crossref]

Mater. Sci. Semicond. Process. (1)

R. Quay, C. Moglestue, V. Palankovski, and S. A. Selberherr, “temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3(1), 149–155 (2000).
[Crossref]

Nano Lett. (12)

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8(5), 1446–1450 (2008).
[Crossref] [PubMed]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15(4), 2751–2755 (2015).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind Avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. 15(6), 3988–3993 (2015).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[Crossref] [PubMed]

Nat. Commun. (4)

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide detectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle-metal/oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Opt. Express (5)

Photon. Nanostructures (1)

A. Ahmadivand, S. Golmohammadi, and N. Pala, “Fano resonances in plasmonic aluminum nanoparticle clusters for precise gas detection: ultra-sensitivity to the minor environmental refractive index perturbations,” Photon. Nanostructures 13(1), 97–105 (2015).
[Crossref]

Phys. Rev. B (2)

A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold, “Quantum theory of spontaneous and simulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B 1(2), 522–536 (1970).
[Crossref]

Plasmonics (2)

A. Ahmadivand and N. Pala, “Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka,” Plasmonics 10(4), 809–817 (2015).
[Crossref]

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensing,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

Rare Met. Mater. Eng. (1)

D. Dongmei, Z. Degang, W. Jinyan, Y. Hui, and W. C. Paul, “A study on the minority carrier diffusion length in n-type GaN films,” Rare Met. Mater. Eng. 26(3), 271–275 (2007).
[Crossref]

Science (3)

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Small (1)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Solid-State Electron. (3)

H. Morkoc, A. Di Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron. 46(2), 157–202 (2002).
[Crossref]

A. Y. C. Yu and C. A. Mead, “Characteristic of aluminum-silicon Schottky barrier diode,” Solid-State Electron. 13(2), 97–104 (1970).
[Crossref]

M. Klingenstein, J. Kuhl, J. Rosenweig, C. Moglestue, A. Hülsmann, J. Schneider, and K. Köhler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37(2), 333–340 (1994).
[Crossref]

Other (5)

D. K. Schroder, Semiconductor Material and Device Characterization (Wiley & Sons, 2006).

C. M. Snowden, Semiconductor Device Modeling (Springer-Verlag, 1989).

D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGrew-Hill Education, 2012).

X. Chen, “Novel heterostructure metal-semiconductor-metal (HMSM) photodetectors with resonant cavity for filber optic communications,” Ph.D. dissertation, Drexel University, Philadelphia, PA (2002).

J. Becker, Plasmons as Sensors (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) Schematic of the plasmonic photodetector composed of aluminum nanodisk clusters deposited on GaN-sapphire substrates. The inset are the definitions for a nanodisk and a heptamer cluster with geometrical parameters, b) a top-view of the photodetector with the geometrical dimensions identification, c) the cross-sectional view of the hot electron generation and transform under the aluminum-based nanodisk clusters at the GaN-metal interface, d) schematic band diagram for the aluminum-GaN interface, showing the carrier formation mechanism in the device.
Fig. 2
Fig. 2 a) Scattering and absorption cross-sectional profiles for an aluminum heptamer antenna with the oxide size of 2 nm around nanoparticles for Knight et al. aluminum, b) E-field map of the plasmon resonance excitation and hybridization in the antenna, and formation of energetic hotspots between proximal nanodisks are obvious.
Fig. 3
Fig. 3 The plasmon responses for the UV photodetector, a) the absorption spectra for heptamer clusters deposited in GaN epilayer with variant oxide thickness and without metallic heptamers, b) E-field enhancement diagram for the UV device with and without aluminum clusters, c) numerically plotted absorption spectra for the oxide layer thickness as a function of incident UV beam in a heptamer nanocluster.
Fig. 4
Fig. 4 a,b) carrier concentration for the detector system without heptamers with bias (5.0 V), while the UV light is in OFF and ON states, respectively c,d) carrier concentration for the system with heptamers with bias (5.0 V), while the UV light is in OFF and ON states, respectively, e,f) E-field enhancement map for the device with and without clusters, while the UV light is ON and bias is 0.0 V.
Fig. 5
Fig. 5 Electrical response for the UV photodetector, A) numerically achieved photocurrent-voltage (I-V) curves for two different oxide thicknesses of a heptamer cluster and without heptamers. The inset is the dark current-voltage (I-V) curves for the non-plasmonic and plasmonic UV photodetector for two different oxide thicknesses at λ = 325 nm and 335 nm for tox = 2 nm, and 4 nm, respectively, B) polarization-independency of the generated photocurrent (blue-spheres) of the device for the polarization angle variations of the incident UV beam.
Fig. 6
Fig. 6 The spectral responses for the UV detector in both non-plasmonic and plasmonic regimes, with variant Al2O3 thicknesses of heptamer clusters, A) responsivity profile under 5.0 V applied bias. Inset is the responsivity profile for the non-plasmonic regime, B) internal quantum efficiencies (IQEs) for different regimes of the UV detector.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N ph = 0.5 ω p | E | 2 Im( ε eff )
IQE= Number of hot electrons/Sec Total absorbed photons/Sec
Γ ph = R ph IQE ( hc qλ )
ε(ω)= ε ω p 2 ω( ω+iΓ )
V sat (T)= V sat (T=300K) ( 1A )+( T 300K )A
τ= t tr 2 + ( R L C ) 2
C= A h ε 0 ( ε GaN +1 ) L+W ( π 4Ln( 8 π + L W ) )

Metrics