Abstract

We present a four beam ratiometric setup for an integrating sphere based gas cell, which can correct for changes in pathlength due to sphere wall contamination. This allows for the gas absorption coefficient to be determined continuously without needing to recalibrate the setup. We demonstrate the technique experimentally, measuring methane gas at 1651nm. For example, contamination covering 1.2% of the sphere wall resulted in an uncompensated error in gas absorption coefficient of ≈41%. With the ratiometric scheme, this error was reduced to ≈2%. Potential limitations of the technique, due to subsequent deviations from mathematical assumptions are discussed, including severe sphere window contamination.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Using integrating spheres as absorption cells: path-length distribution and application of Beer's law

Jane Hodgkinson, Dackson Masiyano, and Ralph P. Tatam
Appl. Opt. 48(30) 5748-5758 (2009)

Methane detection using scattering material as the gas cell

Hongze Lin, Fei Gao, Yujian Ding, Chunsheng Yan, and Sailing He
Appl. Opt. 55(28) 8030-8034 (2016)

Compact gas cell integrated with a linear variable optical filter

N. Pelin Ayerden, Ger de Graaf, and Reinoud F. Wolffenbuttel
Opt. Express 24(3) 2981-3002 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  2. Grand View Research Inc, Gas Sensors Market Analysis And Segment Forecasts To 2020 (Grand View Research Inc., 2014).
  3. J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).
  4. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34(18), 3336–3348 (1995).
    [Crossref] [PubMed]
  5. New Focus Inc, “User manual for New Focus Herriott cell, models 5611 & 5612,” Newport Corp. California (2015).
  6. P. Werle and F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30(4), 430–434 (1991).
    [Crossref] [PubMed]
  7. E. Hawe and E. Lewis, “An Investigation into the feasibility of adapting an integrating sphere for use as a gas absorption cell,” in IOP Proc. Photon (2006), Vol. 16.
  8. D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers, Part 2: Integrating spheres,” Appl. Phys. B 100(2), 303–312 (2010).
    [Crossref]
  9. S. Tranchart, I. H. Bachir, and J. L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35(36), 7070–7074 (1996).
    [Crossref] [PubMed]
  10. M. Lassen, D. Balslev-Clausen, A. Brusch, and J. C. Petersen, “A versatile integrating sphere based photoacoustic sensor for trace gas monitoring,” Opt. Express 22(10), 11660–11669 (2014).
    [Crossref] [PubMed]
  11. D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90(2), 279–288 (2008).
    [Crossref]
  12. P. Elterman, “Integrating Cavity Spectroscopy,” Appl. Opt. 9(9), 2140–2142 (1970).
    [Crossref] [PubMed]
  13. E. Berger, D. W. T. Griffith, G. Schuster, and S. R. Wilson, “Spectroscopy of Matrices and Thin Films with an Integrating Sphere,” Appl. Spectrosc. 43(2), 320–324 (1989).
    [Crossref]
  14. J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
    [Crossref]
  15. D. R. Dana and R. A. Maffione, “A new hyperspectral spherical-cavity absorption meter,” in Ocean Sciences Meeting (Eos Transactions American Geophysical Union, 2006).
  16. M. T. Cone, J. A. Musser, E. Figueroa, J. D. Mason, and E. S. Fry, “Diffuse reflecting material for integrating cavity spectroscopy, including ring-down spectroscopy,” Appl. Opt. 54(2), 334–346 (2015).
    [Crossref] [PubMed]
  17. Labsphere, “Technical guide: Integrating sphere radiometry and photometry,” Labsphere, New Hampsh. (2012).
  18. J. T. O. Kirk, “Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity,” Appl. Opt. 34(21), 4397–4408 (1995).
    [Crossref] [PubMed]
  19. J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
    [Crossref] [PubMed]
  20. F. D. Wilde and D. B. Radtke, “Section A6. National Field Manual for the Collection of Water-Quality Data,” in Handbooks for Water-Resources Investigations, U.S. Geological Survey, ed. (U.S. Geological Survey, 2005).
  21. M. Johnson, “Contamination and Industrial Systems,” in Photodetection and Measurement: Maximizing Performance in Optical Systems, Vol. 1 (McGraw-Hill, 2003), p. 183.
  22. K. L. King, “Turbidimeter signal processing circuit using alternating light sources,” U.S. patent US 5140168 (1992).
  23. Advantec Process Systems, “Quad-beam sensor Technology,” Technical Bulletin APS360–1 (2003).
  24. E. S. Fry, G. W. Kattawar, B. D. Strycker, and P.-W. Zhai, “Equivalent path lengths in an integrating cavity: Comment,” Appl. Opt. 49(4), 575–577 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

M. Lassen, D. Balslev-Clausen, A. Brusch, and J. C. Petersen, “A versatile integrating sphere based photoacoustic sensor for trace gas monitoring,” Opt. Express 22(10), 11660–11669 (2014).
[Crossref] [PubMed]

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

2013 (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

2010 (2)

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers, Part 2: Integrating spheres,” Appl. Phys. B 100(2), 303–312 (2010).
[Crossref]

E. S. Fry, G. W. Kattawar, B. D. Strycker, and P.-W. Zhai, “Equivalent path lengths in an integrating cavity: Comment,” Appl. Opt. 49(4), 575–577 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90(2), 279–288 (2008).
[Crossref]

1996 (1)

1995 (2)

1991 (1)

1989 (1)

1970 (1)

Bachir, I. H.

Balslev-Clausen, D.

Berger, E.

Brusch, A.

Cone, M. T.

Destombes, J. L.

Elterman, P.

Figueroa, E.

Fry, E. S.

Gao, Q.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

Griffith, D. W. T.

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers, Part 2: Integrating spheres,” Appl. Phys. B 100(2), 303–312 (2010).
[Crossref]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90(2), 279–288 (2008).
[Crossref]

Kattawar, G. W.

Kebabian, P. L.

Kirk, J. T. O.

Lassen, M.

Li, Y.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

Masiyano, D.

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers, Part 2: Integrating spheres,” Appl. Phys. B 100(2), 303–312 (2010).
[Crossref]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90(2), 279–288 (2008).
[Crossref]

Mason, J. D.

McManus, J. B.

Musser, J. A.

Petersen, J. C.

Schuster, G.

Slemr, F.

Strycker, B. D.

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers, Part 2: Integrating spheres,” Appl. Phys. B 100(2), 303–312 (2010).
[Crossref]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90(2), 279–288 (2008).
[Crossref]

Tranchart, S.

Werle, P.

Wilson, S. R.

Wu, S.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

Yu, J.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

Zahniser, M. S.

Zhai, P.-W.

Zhang, Y.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

Zhang, Z.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

Zheng, F.

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

Appl. Opt. (8)

J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34(18), 3336–3348 (1995).
[Crossref] [PubMed]

P. Werle and F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30(4), 430–434 (1991).
[Crossref] [PubMed]

S. Tranchart, I. H. Bachir, and J. L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35(36), 7070–7074 (1996).
[Crossref] [PubMed]

P. Elterman, “Integrating Cavity Spectroscopy,” Appl. Opt. 9(9), 2140–2142 (1970).
[Crossref] [PubMed]

M. T. Cone, J. A. Musser, E. Figueroa, J. D. Mason, and E. S. Fry, “Diffuse reflecting material for integrating cavity spectroscopy, including ring-down spectroscopy,” Appl. Opt. 54(2), 334–346 (2015).
[Crossref] [PubMed]

J. T. O. Kirk, “Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity,” Appl. Opt. 34(21), 4397–4408 (1995).
[Crossref] [PubMed]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

E. S. Fry, G. W. Kattawar, B. D. Strycker, and P.-W. Zhai, “Equivalent path lengths in an integrating cavity: Comment,” Appl. Opt. 49(4), 575–577 (2010).
[Crossref] [PubMed]

Appl. Phys. B (3)

J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, “Effective optical path length investigation for cubic diffuse cavity as gas absorption cell,” Appl. Phys. B 116(1), 135–140 (2014).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers, Part 2: Integrating spheres,” Appl. Phys. B 100(2), 303–312 (2010).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90(2), 279–288 (2008).
[Crossref]

Appl. Spectrosc. (1)

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Opt. Express (1)

Other (10)

E. Hawe and E. Lewis, “An Investigation into the feasibility of adapting an integrating sphere for use as a gas absorption cell,” in IOP Proc. Photon (2006), Vol. 16.

Grand View Research Inc, Gas Sensors Market Analysis And Segment Forecasts To 2020 (Grand View Research Inc., 2014).

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).

New Focus Inc, “User manual for New Focus Herriott cell, models 5611 & 5612,” Newport Corp. California (2015).

D. R. Dana and R. A. Maffione, “A new hyperspectral spherical-cavity absorption meter,” in Ocean Sciences Meeting (Eos Transactions American Geophysical Union, 2006).

Labsphere, “Technical guide: Integrating sphere radiometry and photometry,” Labsphere, New Hampsh. (2012).

F. D. Wilde and D. B. Radtke, “Section A6. National Field Manual for the Collection of Water-Quality Data,” in Handbooks for Water-Resources Investigations, U.S. Geological Survey, ed. (U.S. Geological Survey, 2005).

M. Johnson, “Contamination and Industrial Systems,” in Photodetection and Measurement: Maximizing Performance in Optical Systems, Vol. 1 (McGraw-Hill, 2003), p. 183.

K. L. King, “Turbidimeter signal processing circuit using alternating light sources,” U.S. patent US 5140168 (1992).

Advantec Process Systems, “Quad-beam sensor Technology,” Technical Bulletin APS360–1 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Typical four beam setup, comprising two lights sources and two detectors spaced at 90 degree intervals. The two light sources are alternately switched on and off, between (a) and (b), making four independent flux measurements.
Fig. 2
Fig. 2 Scheme showing variation in attenuation by fouling layer (F) due to angle of the beams. Adapted from Johnson [21].
Fig. 3
Fig. 3 Adapted four beam ratiometric scheme; where for example, with source 1, a single path through the sphere provides a direct (short) path with flux Φ11. The diffusely reflected light measured from each detector orthogonal to the light source provides the diffuse (long) path, with flux Φ12. The same principle applies to source 2.
Fig. 4
Fig. 4 Experimental setup of ratiometric four beam technique. S1 and S2 are light sources, D1 and D2 are amplified detectors. (a) shows the initial pathlength calibration stage using a reference cell of known pathlength, and (b) shows the subsequent in situ measurement system using the integrating sphere.
Fig. 5
Fig. 5 Example of typical results obtained for a single diffuse (long)path measurement at a methane concentration of 1010ppm in air. (a) Raw data, (b) corresponding normalized absorbance.
Fig. 6
Fig. 6 An example of the black adhesive tabs used to simulate contamination of the sphere wall.
Fig. 7
Fig. 7 Level of compensation achieved for absorption coefficient measurements using four beam vs. no compensation for a single diffuse path.
Fig. 8
Fig. 8 Comparison of percentage errors in measured absorption coefficient for compensated and uncompensated measurements, for different gas concentrations and levels of sphere wall fouling.
Fig. 9
Fig. 9 Residual error in measured absorption coefficient when compared with the calibrated absorption coefficient for varying concentrations.
Fig. 10
Fig. 10 Simulated particulate contamination on modified microscope cover slips with (a) crumpled polymer film and (b) lightly sprayed grey paint.

Tables (3)

Tables Icon

Table 1 Calculated effect on sphere pathlength of the additional two ports required by a 4-beam configuration

Tables Icon

Table 2 Effect of component variation on measured flux when using the four beam ratiometric compensation vs. a single uncompensated diffuse path

Tables Icon

Table 3 Effect of sphere window contamination on the light flux for both direct (Φ11) and diffuse (Φ22) paths

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Φ e (α)= Φ i exp( αL )
A=log Φ e (α) Φ i =αL
B s = Φ i π A s M
M= ρ 1ρ(1f)
L eff = 2 3 DM
Φ d = B s A d Ω
Φ d = Φ i A d Ω A s π M= Φ i kM
T= Φ d Φ i =kM
Φ e (α)= Φ i exp[ α( L eff +D ) ]
Q(turbidity)= Φ 12 Φ 21 Φ 11 Φ 22
Φ 11 = Φ i11 S 1 R 1 exp( α L 11 ) Φ 12 = Φ d12 S 1 R 2 exp( α L 12 ) Φ 22 = Φ i22 S 2 R 2 exp( α L 22 ) Φ 21 = Φ d21 S 2 R 1 exp( α L 21 )
Q= Φ 12 Φ 21 Φ 11 Φ 22 = Φ d12 Φ d21 Φ i11 Φ i22 exp[ α( L 12 + L 21 L 11 L 22 ) ]
Φ 11 = Φ i11 S 1 R 1 exp( α L 11 ) Φ 12 = Φ d12 T 12 S 1 R 2 exp[ α( L 12 + L 11 ) ] Φ 22 = Φ i22 S 2 R 2 exp( α L 22 ) Φ 21 = Φ d21 T 21 S 2 R 1 exp[ α( L 21 + L 22 ) ]
Q( α )= Φ 12 Φ 21 Φ 11 Φ 22 = Φ d12 Φ d21 Φ i11 Φ i22 exp[ α( L 12 + L 21 ) ]
Q (0) foul Q (0) cal = Φ d12 (foul) Φ d21 (foul) Φ i11 (foul) Φ i22 (foul) Φ i11 (cal) Φ i22 (cal) Φ d12 (cal) Φ d21 (cal)
Q (0) foul Q (0) cal = Φ i12 k M 12 (foul) Φ i21 k M 21 (foul) Φ i11 (foul) Φ i22 (foul) Φ i11 (cal) Φ i22 (cal) Φ i12 k M 12 (cal) Φ i21 k M 21 (cal)
Q (0) foul Q (0) cal = M 12 (foul) M 21 (foul) M 12 (cal) M 21 (cal) = L 12 (foul) L 21 (foul) L 12 (cal) L 21 (cal)
Q (0) foul Q (0) cal = ( L (foul) ) 2 ( L (cal) ) 2
L (foul) = L (cal) Q (0) foul Q (0) cal
Q (α) foul =Q (0) foul exp[ α( L foul ) ]
L sphere = A sphere A cell L cell

Metrics