Abstract

We propose a scheme for generation of a nonlinear coherent state (NCS) of a mechanical resonator (MR) in an optomechanical micro-cavity, in which a two-level quantum dot (QD) and the microcavity are respectively driven by a strong laser and a weak laser. This microcavity can be engineered within a photonic band-gap (PBG) material. By properly tuning the frequency of the weak driving field, two-photon blockade phenomenon occurs. The QD-cavity subsystem can evolve into a dark state due to the damping of the microcavity and the elimination of the decay rate of the QD at selected frequencies in the PBG material. In this situation, the phonon mode of the MR can be prepared into a NCS, which is a non-classical state and possesses the sub-Poisson statistics. We also demonstrate the Wigner function of the NCS, which negativity implies its non-classicality.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of non-classical states of mirror motion in the single-photon strong-coupling regime

Wen-ju Gu, Gao-xiang Li, Shao-ping Wu, and Ya-ping Yang
Opt. Express 22(15) 18254-18267 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref] [PubMed]
  2. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
    [Crossref] [PubMed]
  3. D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
    [Crossref] [PubMed]
  4. X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
    [Crossref] [PubMed]
  5. Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
    [Crossref] [PubMed]
  6. W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).
    [Crossref]
  7. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
    [Crossref]
  8. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
    [Crossref] [PubMed]
  9. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
    [Crossref] [PubMed]
  10. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref] [PubMed]
  11. W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
    [Crossref]
  12. J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
    [Crossref]
  13. X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
    [Crossref]
  14. A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
    [Crossref]
  15. T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
    [Crossref] [PubMed]
  16. W. J. Gu, G. X. Li, S. P. Wu, and Y. P. Yang, “Generation of non-classical states of mirror motion in the single-photon strong-coupling regime,” Opt. Express 22, 18254–18267 (2014).
    [Crossref] [PubMed]
  17. S. Ya. Kilin and A. B. Mikhalychev, “Single-atom laser generates nonlinear coherent states,” Phys. Rev. A 85, 063817 (2012).
    [Crossref]
  18. H. Fakhri and A. Hashemi, “Nonclassical properties of the q-coherent and q-cat states of the Biedenharn-Macfarlane q oscillator with q>1,” Phys. Rev. A 93, 013802 (2016).
    [Crossref]
  19. S. Dey, “Q-deformed noncommutative cat states and their nonclassical properties,” Phys. Rev. D 91, 044024 (2015).
    [Crossref]
  20. S. Dey and A. Fring, “Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations,” Phys. Rev. D 86, 064038 (2012).
    [Crossref]
  21. R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A 54, 4560 (1996).
    [Crossref] [PubMed]
  22. V. I. Manko, G. Marmo, and E. C. G. Sudarshan, “F-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528 (1997).
    [Crossref]
  23. W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes-Cummings dynamics of a trapped ion,” Phys. Rev. A 52, 4214 (1995).
    [Crossref] [PubMed]
  24. M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, “A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model,” Eur. Phys. J. D 32, 397–408 (2005).
    [Crossref]
  25. M. B. Harouni, R. Roknizadeh, and M. H. Naderi, “Nonlinear coherent state of an exciton in a wide quantum dot,” J. Phys. B: At. Mol. Opt. Phys. 41, 225501 (2008).
    [Crossref]
  26. Z. Kis, W. Vogel, and L. Davidovich, “Nonlinear coherent states of trapped-atom motion,” Phys. Rev. A 64, 033401 (2001).
    [Crossref]
  27. E. M. F. Curado, J-P Gazeau, and Ligia M. C. S. Rodrigues, “Nonlinear coherent states for optimizing quantum information,” Phys. Scr. 82, 038108 (2010).
    [Crossref]
  28. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
    [Crossref] [PubMed]
  29. G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
    [Crossref]
  30. A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-tolerant linear optical quantum computing with small-amplitude coherent states,” Phys. Rev. Lett. 100, 030503 (2008).
    [Crossref] [PubMed]
  31. H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).
    [Crossref] [PubMed]
  32. F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  33. J. Niset, J. Fiurasek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
    [Crossref] [PubMed]
  34. M. G. Genoni and M. G. A. Paris, “Quantifying non-Gaussianity for quantum information,” Phys. Rev. A,  82, 052341 (2010).
    [Crossref]
  35. G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
    [Crossref]
  36. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
    [Crossref] [PubMed]
  37. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotecnol. 2, 114–120 (2007).
    [Crossref]
  38. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  39. A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).
    [Crossref]
  40. R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
    [Crossref]
  41. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
    [Crossref] [PubMed]
  42. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
    [Crossref]
  43. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
    [Crossref] [PubMed]
  44. C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
    [Crossref] [PubMed]
  45. A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
    [Crossref] [PubMed]
  46. A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
    [Crossref]
  47. W. W. Deng, G. X. Li, and H. Qin, “Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,” Phys. Rev. A 91, 043831 (2015).
    [Crossref]
  48. S. S. Shamailov, A. S. Parkins, M. J. Collett, and H.J. Carmichael, “Multi-photon blockade and dressing of the dressed states,” Opt. Commun. 283, 766–772 (2010).
    [Crossref]
  49. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  50. R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
    [Crossref] [PubMed]
  51. S. Carlig and M. A. Macovei, “Long-time correlated quantum dynamics of phonon cooling,” Phys. Rev. A 90, 013817 (2014).
    [Crossref]
  52. R. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
    [Crossref]
  53. X. Ma and S. John, “Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing,” Phys. Rev. A 80, 063810 (2009).
    [Crossref]
  54. L. Florescu, S. John, T. Quang, and R. Wang, “Theory of a one-atom laser in a photonic band-gap microchip,” Phys. Rev. A 69, 013816 (2004).
    [Crossref]
  55. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764 (1994).
    [Crossref] [PubMed]
  56. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions (Wiley, 1992).
  57. C. Roy and S. Hughes, “Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects,” Phys. Rev. Lett. 106, 247403 (2011).
    [Crossref] [PubMed]
  58. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge, 1997).
  59. J. S. Peng and G. X. Li, Introduction to modern quantum optics (World Scientific, 1998).
  60. N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236 (1981).
    [Crossref]
  61. A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
    [Crossref]
  62. J. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics,” Phys. Rev. Lett. 112, 013601 (2014).
    [Crossref] [PubMed]
  63. X. W. Xu, H. Wang, J. Zhang, and Y. X. Liu, “Engineering of nonclassical motional states in optomechanical systems,” Phys. Rev. A 88, 063819 (2013).
    [Crossref]
  64. R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
    [Crossref] [PubMed]
  65. R. Leijssen and E. Verhagen, “Strong optomechanical interactions in a sliced photonic crystal nanobeam,” Sci. Rep. 5, 15974 (2015).
    [Crossref] [PubMed]
  66. F. Lecocq, J. D. Teufel, J. Aumentado, and R. W. Simmonds, “Resolving the vacuum fluctuations of an optomechanical system using an artificial atom,” Nature Phys. 11, 635–639 (2015).
    [Crossref]
  67. G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore, “Intensity correlations of a cooperative system,” Phys. Rev. Lett. 42, 1260 (1979).
    [Crossref]
  68. M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
    [Crossref]
  69. C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2004).
  70. A. C. Pflanzer, O. Romero-Isart, and J. I. Cirac, “Optomechanics assisted by a qubit: from dissipative state preparation to many-partite systems,” Phys. Rev. A 88, 033804 (2014).
    [Crossref]
  71. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011).
    [Crossref] [PubMed]
  72. A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011).
    [Crossref] [PubMed]
  73. J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
    [Crossref] [PubMed]
  74. G. Via, G. Kirchmair, and O. Romero-Isart, “Strong single-photon coupling in superconducting quantum magnetomechanics,” Phys. Rev. Lett. 114, 143602 (2015).
    [Crossref] [PubMed]
  75. P. D. Nation, J. Suh, and M. P. Blencowe, “Ultrastrong optomechanics incorporating the dynamical Casimir effect,” Phys. Rev. A 93, 022510 (2016).
    [Crossref]
  76. A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
    [Crossref]
  77. J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [Crossref] [PubMed]
  78. M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).
    [Crossref] [PubMed]
  79. J. B. Clark, F. Lecocq, R. W. Simmonds, J Aumentado, and J. D. Teufel, “Observation of Strong Radiation Pressure Forces from Squeezed Light on a Mechanical Oscillator,” http://arxiv.org/abs/1601.02689 (2016).
  80. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529 (1963).
    [Crossref]
  81. B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
    [Crossref]
  82. Y. H. Zhou, H. Z. Shen, and X. X. Yi, “Unconventional photon blockade with second-order nonlinearity,” Phys. Rev. A 92, 023838 (2015).
    [Crossref]
  83. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749 (1932).
    [Crossref]
  84. A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality,” J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).
    [Crossref]
  85. R. L. Hudson, “When is the Wigner quasi-probability density non-negative?” Rep. Math. Phys. 6, 249–252 (1974).
    [Crossref]
  86. S. B. Li, X. B. Zou, and G. C. Guo, “Nonclassicality of quantum excitation of classical coherent field in photon-loss channel,” Phys. Rev. A 75, 045801 (2007).
    [Crossref]
  87. A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).
    [Crossref]
  88. P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002).
    [Crossref]
  89. S. Olivares and M. G. A. Paris, “De-Gaussification by inconclusive photon subtraction,” Laser Phys. 16, 1533–1550 (2006).
    [Crossref]
  90. N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
    [Crossref] [PubMed]
  91. F. DellAnno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
    [Crossref]

2016 (4)

H. Fakhri and A. Hashemi, “Nonclassical properties of the q-coherent and q-cat states of the Biedenharn-Macfarlane q oscillator with q>1,” Phys. Rev. A 93, 013802 (2016).
[Crossref]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

P. D. Nation, J. Suh, and M. P. Blencowe, “Ultrastrong optomechanics incorporating the dynamical Casimir effect,” Phys. Rev. A 93, 022510 (2016).
[Crossref]

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).
[Crossref] [PubMed]

2015 (9)

B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
[Crossref]

Y. H. Zhou, H. Z. Shen, and X. X. Yi, “Unconventional photon blockade with second-order nonlinearity,” Phys. Rev. A 92, 023838 (2015).
[Crossref]

R. Leijssen and E. Verhagen, “Strong optomechanical interactions in a sliced photonic crystal nanobeam,” Sci. Rep. 5, 15974 (2015).
[Crossref] [PubMed]

F. Lecocq, J. D. Teufel, J. Aumentado, and R. W. Simmonds, “Resolving the vacuum fluctuations of an optomechanical system using an artificial atom,” Nature Phys. 11, 635–639 (2015).
[Crossref]

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

G. Via, G. Kirchmair, and O. Romero-Isart, “Strong single-photon coupling in superconducting quantum magnetomechanics,” Phys. Rev. Lett. 114, 143602 (2015).
[Crossref] [PubMed]

S. Dey, “Q-deformed noncommutative cat states and their nonclassical properties,” Phys. Rev. D 91, 044024 (2015).
[Crossref]

W. W. Deng, G. X. Li, and H. Qin, “Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,” Phys. Rev. A 91, 043831 (2015).
[Crossref]

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

2014 (6)

W. J. Gu, G. X. Li, S. P. Wu, and Y. P. Yang, “Generation of non-classical states of mirror motion in the single-photon strong-coupling regime,” Opt. Express 22, 18254–18267 (2014).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

A. C. Pflanzer, O. Romero-Isart, and J. I. Cirac, “Optomechanics assisted by a qubit: from dissipative state preparation to many-partite systems,” Phys. Rev. A 88, 033804 (2014).
[Crossref]

S. Carlig and M. A. Macovei, “Long-time correlated quantum dynamics of phonon cooling,” Phys. Rev. A 90, 013817 (2014).
[Crossref]

J. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics,” Phys. Rev. Lett. 112, 013601 (2014).
[Crossref] [PubMed]

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

2013 (8)

X. W. Xu, H. Wang, J. Zhang, and Y. X. Liu, “Engineering of nonclassical motional states in optomechanical systems,” Phys. Rev. A 88, 063819 (2013).
[Crossref]

A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
[Crossref]

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
[Crossref] [PubMed]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).
[Crossref]

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

2012 (7)

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

S. Dey and A. Fring, “Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations,” Phys. Rev. D 86, 064038 (2012).
[Crossref]

S. Ya. Kilin and A. B. Mikhalychev, “Single-atom laser generates nonlinear coherent states,” Phys. Rev. A 85, 063817 (2012).
[Crossref]

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

2011 (9)

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

C. Roy and S. Hughes, “Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects,” Phys. Rev. Lett. 106, 247403 (2011).
[Crossref] [PubMed]

P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011).
[Crossref] [PubMed]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011).
[Crossref] [PubMed]

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

2010 (5)

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

S. S. Shamailov, A. S. Parkins, M. J. Collett, and H.J. Carmichael, “Multi-photon blockade and dressing of the dressed states,” Opt. Commun. 283, 766–772 (2010).
[Crossref]

M. G. Genoni and M. G. A. Paris, “Quantifying non-Gaussianity for quantum information,” Phys. Rev. A,  82, 052341 (2010).
[Crossref]

E. M. F. Curado, J-P Gazeau, and Ligia M. C. S. Rodrigues, “Nonlinear coherent states for optimizing quantum information,” Phys. Scr. 82, 038108 (2010).
[Crossref]

2009 (3)

J. Niset, J. Fiurasek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
[Crossref]

X. Ma and S. John, “Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing,” Phys. Rev. A 80, 063810 (2009).
[Crossref]

2008 (3)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-tolerant linear optical quantum computing with small-amplitude coherent states,” Phys. Rev. Lett. 100, 030503 (2008).
[Crossref] [PubMed]

M. B. Harouni, R. Roknizadeh, and M. H. Naderi, “Nonlinear coherent state of an exciton in a wide quantum dot,” J. Phys. B: At. Mol. Opt. Phys. 41, 225501 (2008).
[Crossref]

2007 (5)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotecnol. 2, 114–120 (2007).
[Crossref]

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

F. DellAnno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
[Crossref]

S. B. Li, X. B. Zou, and G. C. Guo, “Nonclassicality of quantum excitation of classical coherent field in photon-loss channel,” Phys. Rev. A 75, 045801 (2007).
[Crossref]

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).
[Crossref]

2006 (1)

S. Olivares and M. G. A. Paris, “De-Gaussification by inconclusive photon subtraction,” Laser Phys. 16, 1533–1550 (2006).
[Crossref]

2005 (4)

N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
[Crossref] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, “A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model,” Eur. Phys. J. D 32, 397–408 (2005).
[Crossref]

2004 (6)

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).
[Crossref] [PubMed]

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality,” J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).
[Crossref]

L. Florescu, S. John, T. Quang, and R. Wang, “Theory of a one-atom laser in a photonic band-gap microchip,” Phys. Rev. A 69, 013816 (2004).
[Crossref]

R. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]

2002 (3)

P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002).
[Crossref]

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

2001 (3)

Z. Kis, W. Vogel, and L. Davidovich, “Nonlinear coherent states of trapped-atom motion,” Phys. Rev. A 64, 033401 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

1997 (2)

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).
[Crossref]

V. I. Manko, G. Marmo, and E. C. G. Sudarshan, “F-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528 (1997).
[Crossref]

1996 (1)

R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A 54, 4560 (1996).
[Crossref] [PubMed]

1995 (1)

W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes-Cummings dynamics of a trapped ion,” Phys. Rev. A 52, 4214 (1995).
[Crossref] [PubMed]

1994 (1)

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764 (1994).
[Crossref] [PubMed]

1981 (1)

N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236 (1981).
[Crossref]

1979 (1)

G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore, “Intensity correlations of a cooperative system,” Phys. Rev. Lett. 42, 1260 (1979).
[Crossref]

1974 (1)

R. L. Hudson, “When is the Wigner quasi-probability density non-negative?” Rep. Math. Phys. 6, 249–252 (1974).
[Crossref]

1963 (1)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529 (1963).
[Crossref]

1932 (1)

E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749 (1932).
[Crossref]

Abdumalikov, A. A.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Adesso, G.

G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
[Crossref]

Agarwal, G. S.

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).
[Crossref]

G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore, “Intensity correlations of a cooperative system,” Phys. Rev. Lett. 42, 1260 (1979).
[Crossref]

Albano, L.

F. DellAnno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Alléaume, R

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

An, K.

B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
[Crossref]

Anant, V.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

Ann, B. M.

B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
[Crossref]

Ansmann, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Aspelmeyer, M.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Atkinson, P.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Auffèves-Garnier, A.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Aumentado, J.

F. Lecocq, J. D. Teufel, J. Aumentado, and R. W. Simmonds, “Resolving the vacuum fluctuations of an optomechanical system using an artificial atom,” Nature Phys. 11, 635–639 (2015).
[Crossref]

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

Bajcsy, M.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

Bajer, J.

A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
[Crossref]

Balykin, V. I.

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Baur, M.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Bennett, S. D.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

Beveratos, A

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Bhattacharyya, J.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Bialczak, R. C.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Biswas, A.

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).
[Crossref]

Blais, A.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Blencowe, M. P.

P. D. Nation, J. Suh, and M. P. Blencowe, “Ultrastrong optomechanics incorporating the dynamical Casimir effect,” Phys. Rev. A 93, 022510 (2016).
[Crossref]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Børkje, K.

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011).
[Crossref] [PubMed]

Botter, T.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

Bozyigit, D.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Brahms, N.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

Brooks, D. W. C.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

Brouri-Tualle, R

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Buckley, S.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

Carlig, S.

S. Carlig and M. A. Macovei, “Long-time correlated quantum dynamics of phonon cooling,” Phys. Rev. A 90, 013817 (2014).
[Crossref]

Carmichael, H. J.

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).
[Crossref] [PubMed]

Carmichael, H.J.

S. S. Shamailov, A. S. Parkins, M. J. Collett, and H.J. Carmichael, “Multi-photon blockade and dressing of the dressed states,” Opt. Commun. 283, 766–772 (2010).
[Crossref]

Cerf, N. J.

J. Niset, J. Fiurasek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
[Crossref] [PubMed]

Chan, J.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Cho, S. U.

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Cirac, J. I.

A. C. Pflanzer, O. Romero-Isart, and J. I. Cirac, “Optomechanics assisted by a qubit: from dissipative state preparation to many-partite systems,” Phys. Rev. A 88, 033804 (2014).
[Crossref]

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

Ciuti, C.

J. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics,” Phys. Rev. Lett. 112, 013601 (2014).
[Crossref] [PubMed]

Cleland, A. N.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Clerk, A. A.

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).
[Crossref] [PubMed]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

Cochrane, P. T.

P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002).
[Crossref]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions (Wiley, 1992).

Collett, M. J.

S. S. Shamailov, A. S. Parkins, M. J. Collett, and H.J. Carmichael, “Multi-photon blockade and dressing of the dressed states,” Opt. Commun. 283, 766–772 (2010).
[Crossref]

Curado, E. M. F.

E. M. F. Curado, J-P Gazeau, and Ligia M. C. S. Rodrigues, “Nonlinear coherent states for optimizing quantum information,” Phys. Scr. 82, 038108 (2010).
[Crossref]

da Silva, M. P.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Davidovich, L.

Z. Kis, W. Vogel, and L. Davidovich, “Nonlinear coherent states of trapped-atom motion,” Phys. Rev. A 64, 033401 (2001).
[Crossref]

de Matos Filho, R. L.

R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A 54, 4560 (1996).
[Crossref] [PubMed]

W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes-Cummings dynamics of a trapped ion,” Phys. Rev. A 52, 4214 (1995).
[Crossref] [PubMed]

De Siena, S.

G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
[Crossref]

F. DellAnno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
[Crossref]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

DellAnno, F.

G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
[Crossref]

F. DellAnno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
[Crossref]

Deng, W. W.

W. W. Deng, G. X. Li, and H. Qin, “Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,” Phys. Rev. A 91, 043831 (2015).
[Crossref]

Deutsch, M.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).
[Crossref]

Dey, S.

S. Dey, “Q-deformed noncommutative cat states and their nonclassical properties,” Phys. Rev. D 91, 044024 (2015).
[Crossref]

S. Dey and A. Fring, “Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations,” Phys. Rev. D 86, 064038 (2012).
[Crossref]

Didier, N.

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).
[Crossref] [PubMed]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Dumeige, Y

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions (Wiley, 1992).

Eberly, J. H.

N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236 (1981).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Eichler, C.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Eisert, J.

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

Eng, L. M.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Englund, D.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

Fakhri, H.

H. Fakhri and A. Hashemi, “Nonclassical properties of the q-coherent and q-cat states of the Biedenharn-Macfarlane q oscillator with q>1,” Phys. Rev. A 93, 013802 (2016).
[Crossref]

Faraon, A.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

Favero, I.

J. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics,” Phys. Rev. Lett. 112, 013601 (2014).
[Crossref] [PubMed]

Fehrenbacher, M.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Feng, D. H.

G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore, “Intensity correlations of a cooperative system,” Phys. Rev. Lett. 42, 1260 (1979).
[Crossref]

Filipp, S.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Fink, J. M.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Fischer, K.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

Fiurasek, J.

J. Niset, J. Fiurasek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

Florescu, L.

L. Florescu, S. John, T. Quang, and R. Wang, “Theory of a one-atom laser in a photonic band-gap microchip,” Phys. Rev. A 69, 013816 (2004).
[Crossref]

Florescu, M.

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

Forchel, A.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Fring, A.

S. Dey and A. Fring, “Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations,” Phys. Rev. D 86, 064038 (2012).
[Crossref]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2004).

Gazeau, J-P

E. M. F. Curado, J-P Gazeau, and Ligia M. C. S. Rodrigues, “Nonlinear coherent states for optimizing quantum information,” Phys. Scr. 82, 038108 (2010).
[Crossref]

Genoni, M. G.

M. G. Genoni and M. G. A. Paris, “Quantifying non-Gaussianity for quantum information,” Phys. Rev. A,  82, 052341 (2010).
[Crossref]

Gérard, J. M.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Giedke, G.

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

Gilmore, R.

G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore, “Intensity correlations of a cooperative system,” Phys. Rev. Lett. 42, 1260 (1979).
[Crossref]

Girvin, S. M.

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011).
[Crossref] [PubMed]

Glauber, R. J.

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529 (1963).
[Crossref]

Grangier, P

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Gröblacher, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions (Wiley, 1992).

Gu, W. J.

W. J. Gu, G. X. Li, S. P. Wu, and Y. P. Yang, “Generation of non-classical states of mirror motion in the single-photon strong-coupling regime,” Opt. Express 22, 18254–18267 (2014).
[Crossref] [PubMed]

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).
[Crossref]

Guo, G. C.

S. B. Li, X. B. Zou, and G. C. Guo, “Nonclassicality of quantum excitation of classical coherent field in photon-loss channel,” Phys. Rev. A 75, 045801 (2007).
[Crossref]

Gupta, S. D.

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Habraken, S. J. M.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

Hakonen, P. J.

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Hakuta, K.

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Harouni, M. B.

M. B. Harouni, R. Roknizadeh, and M. H. Naderi, “Nonlinear coherent state of an exciton in a wide quantum dot,” J. Phys. B: At. Mol. Opt. Phys. 41, 225501 (2008).
[Crossref]

Haselgrove, H. L.

A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-tolerant linear optical quantum computing with small-amplitude coherent states,” Phys. Rev. Lett. 100, 030503 (2008).
[Crossref] [PubMed]

Hashemi, A.

H. Fakhri and A. Hashemi, “Nonclassical properties of the q-coherent and q-cat states of the Biedenharn-Macfarlane q oscillator with q>1,” Phys. Rev. A 93, 013802 (2016).
[Crossref]

Heikkilä, T. T.

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Helm, M.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Hoffman, A. J.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

Hofheinz, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Hofmann, C.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Hong, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

Houck, A. A.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

Hudson, R. L.

R. L. Hudson, “When is the Wigner quasi-probability density non-negative?” Rep. Math. Phys. 6, 249–252 (1974).
[Crossref]

Hughes, S.

C. Roy and S. Hughes, “Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects,” Phys. Rev. Lett. 106, 247403 (2011).
[Crossref] [PubMed]

Illuminati, F.

G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
[Crossref]

F. DellAnno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
[Crossref]

Imamoglu, A.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).
[Crossref]

Jacob, R.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Jing, H.

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

Johansson, J. R.

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

John, S.

X. Ma and S. John, “Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing,” Phys. Rev. A 80, 063810 (2009).
[Crossref]

L. Florescu, S. John, T. Quang, and R. Wang, “Theory of a one-atom laser in a photonic band-gap microchip,” Phys. Rev. A 69, 013816 (2004).
[Crossref]

R. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764 (1994).
[Crossref] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Kenfack, A.

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality,” J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).
[Crossref]

Kien, F. L.

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Kilin, S. Ya.

S. Ya. Kilin and A. B. Mikhalychev, “Single-atom laser generates nonlinear coherent states,” Phys. Rev. A 85, 063817 (2012).
[Crossref]

Kim, J.

B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
[Crossref]

Kimble, H. J.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

Kirchmair, G.

G. Via, G. Kirchmair, and O. Romero-Isart, “Strong single-photon coupling in superconducting quantum magnetomechanics,” Phys. Rev. Lett. 114, 143602 (2015).
[Crossref] [PubMed]

Kis, Z.

Z. Kis, W. Vogel, and L. Davidovich, “Nonlinear coherent states of trapped-atom motion,” Phys. Rev. A 64, 033401 (2001).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Komar, P.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

Krause, A.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Krause, A. G.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

Kronwald, A.

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

Kruger, O.

N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
[Crossref] [PubMed]

Kuhn, S.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lagoudakis, K. G.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

Lang, C.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Law, C. K.

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

Lecocq, F.

F. Lecocq, J. D. Teufel, J. Aumentado, and R. W. Simmonds, “Resolving the vacuum fluctuations of an optomechanical system using an artificial atom,” Nature Phys. 11, 635–639 (2015).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Leijssen, R.

R. Leijssen and E. Verhagen, “Strong optomechanical interactions in a sliced photonic crystal nanobeam,” Sci. Rep. 5, 15974 (2015).
[Crossref] [PubMed]

Lemonde, M. A.

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).
[Crossref] [PubMed]

Lenander, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Li, G. X.

W. W. Deng, G. X. Li, and H. Qin, “Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,” Phys. Rev. A 91, 043831 (2015).
[Crossref]

W. J. Gu, G. X. Li, S. P. Wu, and Y. P. Yang, “Generation of non-classical states of mirror motion in the single-photon strong-coupling regime,” Opt. Express 22, 18254–18267 (2014).
[Crossref] [PubMed]

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).
[Crossref]

J. S. Peng and G. X. Li, Introduction to modern quantum optics (World Scientific, 1998).

Li, M.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotecnol. 2, 114–120 (2007).
[Crossref]

Li, S. B.

S. B. Li, X. B. Zou, and G. C. Guo, “Nonclassicality of quantum excitation of classical coherent field in photon-loss channel,” Phys. Rev. A 75, 045801 (2007).
[Crossref]

Liao, J. Q.

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Liu, Y. C.

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Liu, Y. X.

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

X. W. Xu, H. Wang, J. Zhang, and Y. X. Liu, “Engineering of nonclassical motional states in optomechanical systems,” Phys. Rev. A 88, 063819 (2013).
[Crossref]

A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
[Crossref]

Löffler, A.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Lü, X. Y.

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

Luan, X. S.

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Lucero, E.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Lukin, M. D.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

Lund, A. P.

A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-tolerant linear optical quantum computing with small-amplitude coherent states,” Phys. Rev. Lett. 100, 030503 (2008).
[Crossref] [PubMed]

Ma, X.

X. Ma and S. John, “Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing,” Phys. Rev. A 80, 063810 (2009).
[Crossref]

Macovei, M. A.

S. Carlig and M. A. Macovei, “Long-time correlated quantum dynamics of phonon cooling,” Phys. Rev. A 90, 013817 (2014).
[Crossref]

Majumdar, A.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

Manko, V. I.

V. I. Manko, G. Marmo, and E. C. G. Sudarshan, “F-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528 (1997).
[Crossref]

Marmo, G.

V. I. Manko, G. Marmo, and E. C. G. Sudarshan, “F-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528 (1997).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

Martinis, J. M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Massel, F.

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Messin, G

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Mikhalychev, A. B.

S. Ya. Kilin and A. B. Mikhalychev, “Single-atom laser generates nonlinear coherent states,” Phys. Rev. A 85, 063817 (2012).
[Crossref]

Milburn, G. J.

P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Miranowicz, A.

A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
[Crossref]

Naderi, M. H.

M. B. Harouni, R. Roknizadeh, and M. H. Naderi, “Nonlinear coherent state of an exciton in a wide quantum dot,” J. Phys. B: At. Mol. Opt. Phys. 41, 225501 (2008).
[Crossref]

M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, “A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model,” Eur. Phys. J. D 32, 397–408 (2005).
[Crossref]

Narducci, L. M.

G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore, “Intensity correlations of a cooperative system,” Phys. Rev. Lett. 42, 1260 (1979).
[Crossref]

Narozhny, N. B.

N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236 (1981).
[Crossref]

Nation, P. D.

P. D. Nation, J. Suh, and M. P. Blencowe, “Ultrastrong optomechanics incorporating the dynamical Casimir effect,” Phys. Rev. A 93, 022510 (2016).
[Crossref]

Navez, P.

N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
[Crossref] [PubMed]

Neeley, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Nha, H.

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).
[Crossref] [PubMed]

Niset, J.

J. Niset, J. Fiurasek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

Nori, F.

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
[Crossref]

Norte, R. A.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Nunnenkamp, A.

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011).
[Crossref] [PubMed]

O’Connell, A. D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Olivares, S.

S. Olivares and M. G. A. Paris, “De-Gaussification by inconclusive photon subtraction,” Laser Phys. 16, 1533–1550 (2006).
[Crossref]

Painter, O.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Paprzycka, M.

A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
[Crossref]

Paris, M. G. A.

M. G. Genoni and M. G. A. Paris, “Quantifying non-Gaussianity for quantum information,” Phys. Rev. A,  82, 052341 (2010).
[Crossref]

S. Olivares and M. G. A. Paris, “De-Gaussification by inconclusive photon subtraction,” Laser Phys. 16, 1533–1550 (2006).
[Crossref]

Parkins, A. S.

S. S. Shamailov, A. S. Parkins, M. J. Collett, and H.J. Carmichael, “Multi-photon blockade and dressing of the dressed states,” Opt. Commun. 283, 766–772 (2010).
[Crossref]

Peng, J. S.

J. S. Peng and G. X. Li, Introduction to modern quantum optics (World Scientific, 1998).

Petroff, P.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

Pflanzer, A. C.

A. C. Pflanzer, O. Romero-Isart, and J. I. Cirac, “Optomechanics assisted by a qubit: from dissipative state preparation to many-partite systems,” Phys. Rev. A 88, 033804 (2014).
[Crossref]

Piggott, A. Y.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

Pirkkalainen, J. M.

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Plenio, M. B.

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

Poizat, J. P.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Poizat, J-P

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Purdy, T. P.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

Qin, H.

W. W. Deng, G. X. Li, and H. Qin, “Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,” Phys. Rev. A 91, 043831 (2015).
[Crossref]

Quang, T.

L. Florescu, S. John, T. Quang, and R. Wang, “Theory of a one-atom laser in a photonic band-gap microchip,” Phys. Rev. A 69, 013816 (2004).
[Crossref]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764 (1994).
[Crossref] [PubMed]

Rabl, P.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011).
[Crossref] [PubMed]

Ralph, T. C.

A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-tolerant linear optical quantum computing with small-amplitude coherent states,” Phys. Rev. Lett. 100, 030503 (2008).
[Crossref] [PubMed]

P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002).
[Crossref]

Ramos, T.

T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
[Crossref] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Restrepo, J.

J. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics,” Phys. Rev. Lett. 112, 013601 (2014).
[Crossref] [PubMed]

Riedinger, R.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

Roch, J-F

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Rodrigues, Ligia M. C. S.

E. M. F. Curado, J-P Gazeau, and Ligia M. C. S. Rodrigues, “Nonlinear coherent states for optimizing quantum information,” Phys. Scr. 82, 038108 (2010).
[Crossref]

Roknizadeh, R.

M. B. Harouni, R. Roknizadeh, and M. H. Naderi, “Nonlinear coherent state of an exciton in a wide quantum dot,” J. Phys. B: At. Mol. Opt. Phys. 41, 225501 (2008).
[Crossref]

M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, “A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model,” Eur. Phys. J. D 32, 397–408 (2005).
[Crossref]

Romero-Isart, O.

G. Via, G. Kirchmair, and O. Romero-Isart, “Strong single-photon coupling in superconducting quantum magnetomechanics,” Phys. Rev. Lett. 114, 143602 (2015).
[Crossref] [PubMed]

A. C. Pflanzer, O. Romero-Isart, and J. I. Cirac, “Optomechanics assisted by a qubit: from dissipative state preparation to many-partite systems,” Phys. Rev. A 88, 033804 (2014).
[Crossref]

Roukes, M. L.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotecnol. 2, 114–120 (2007).
[Crossref]

Roy, C.

C. Roy and S. Hughes, “Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects,” Phys. Rev. Lett. 106, 247403 (2011).
[Crossref] [PubMed]

Rundquist, A.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

S?k, G.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Sanchez-Mondragon, J. J.

N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236 (1981).
[Crossref]

Sank, D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Sarmiento, T.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

Scheel, S.

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

Schmidt, H.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).
[Crossref]

Schmidt, O. G.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Schmidt, S.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

Schneider, H.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Schreppler, S.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge, 1997).

Shamailov, S. S.

S. S. Shamailov, A. S. Parkins, M. J. Collett, and H.J. Carmichael, “Multi-photon blockade and dressing of the dressed states,” Opt. Commun. 283, 766–772 (2010).
[Crossref]

Shang, J.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

Shen, H. Z.

Y. H. Zhou, H. Z. Shen, and X. X. Yi, “Unconventional photon blockade with second-order nonlinearity,” Phys. Rev. A 92, 023838 (2015).
[Crossref]

Sillanpää, M. A.

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Simmonds, R. W.

F. Lecocq, J. D. Teufel, J. Aumentado, and R. W. Simmonds, “Resolving the vacuum fluctuations of an optomechanical system using an artificial atom,” Nature Phys. 11, 635–639 (2015).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Simon, C.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Slater, J. A.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

Soltanolkotabi, M.

M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, “A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model,” Eur. Phys. J. D 32, 397–408 (2005).
[Crossref]

Song, Y.

B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
[Crossref]

Souza, L. A. M.

G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
[Crossref]

Spietz, L.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

Srinivasan, S. J.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

Stamper-Kurn, D. M.

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

Stannigel, K.

T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
[Crossref] [PubMed]

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

Steffen, L.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Stoltz, N.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

Sudarshan, E. C. G.

V. I. Manko, G. Marmo, and E. C. G. Sudarshan, “F-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528 (1997).
[Crossref]

Sudhir, V.

T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
[Crossref] [PubMed]

Suh, J.

P. D. Nation, J. Suh, and M. P. Blencowe, “Ultrastrong optomechanics incorporating the dynamical Casimir effect,” Phys. Rev. A 93, 022510 (2016).
[Crossref]

Tang, H. X.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotecnol. 2, 114–120 (2007).
[Crossref]

Teufel, J. D.

F. Lecocq, J. D. Teufel, J. Aumentado, and R. W. Simmonds, “Resolving the vacuum fluctuations of an optomechanical system using an artificial atom,” Nature Phys. 11, 635–639 (2015).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Toishi, M.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

Treussart, F

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Tuorila, J.

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Türeci, H. E.

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

Verhagen, E.

R. Leijssen and E. Verhagen, “Strong optomechanical interactions in a sliced photonic crystal nanobeam,” Sci. Rep. 5, 15974 (2015).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

Via, G.

G. Via, G. Kirchmair, and O. Romero-Isart, “Strong single-photon coupling in superconducting quantum magnetomechanics,” Phys. Rev. Lett. 114, 143602 (2015).
[Crossref] [PubMed]

Vogel, W.

Z. Kis, W. Vogel, and L. Davidovich, “Nonlinear coherent states of trapped-atom motion,” Phys. Rev. A 64, 033401 (2001).
[Crossref]

R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A 54, 4560 (1996).
[Crossref] [PubMed]

W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes-Cummings dynamics of a trapped ion,” Phys. Rev. A 52, 4214 (1995).
[Crossref] [PubMed]

von Ribbeck, H. G.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Vuckovic, J.

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

Wallraff, A.

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

Wang, H.

X. W. Xu, H. Wang, J. Zhang, and Y. X. Liu, “Engineering of nonclassical motional states in optomechanical systems,” Phys. Rev. A 88, 063819 (2013).
[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Wang, R.

L. Florescu, S. John, T. Quang, and R. Wang, “Theory of a one-atom laser in a photonic band-gap microchip,” Phys. Rev. A 69, 013816 (2004).
[Crossref]

R. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]

Weides, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

Wenner, J.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Wenzel, M. T.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Werner, R. F.

N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
[Crossref] [PubMed]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Wigner, E.

E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749 (1932).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Winnerl, S.

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Wolf, M. M.

N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
[Crossref] [PubMed]

Wong, C. W.

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Woods, G.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).
[Crossref]

Wu, S. P.

Wu, Y.

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

Xiao, Y. F.

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Xu, X. W.

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

X. W. Xu, H. Wang, J. Zhang, and Y. X. Liu, “Engineering of nonclassical motional states in optomechanical systems,” Phys. Rev. A 88, 063819 (2013).
[Crossref]

Yang, D.

B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
[Crossref]

Yang, Y. P.

W. J. Gu, G. X. Li, S. P. Wu, and Y. P. Yang, “Generation of non-classical states of mirror motion in the single-photon strong-coupling regime,” Opt. Express 22, 18254–18267 (2014).
[Crossref] [PubMed]

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

Yi, X. X.

Y. H. Zhou, H. Z. Shen, and X. X. Yi, “Unconventional photon blockade with second-order nonlinearity,” Phys. Rev. A 92, 023838 (2015).
[Crossref]

Zhang, J.

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

X. W. Xu, H. Wang, J. Zhang, and Y. X. Liu, “Engineering of nonclassical motional states in optomechanical systems,” Phys. Rev. A 88, 063819 (2013).
[Crossref]

Zhao, Y. J.

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

Zhou, Y. H.

Y. H. Zhou, H. Z. Shen, and X. X. Yi, “Unconventional photon blockade with second-order nonlinearity,” Phys. Rev. A 92, 023838 (2015).
[Crossref]

Zoller, P.

T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
[Crossref] [PubMed]

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2004).

Zou, X. B.

S. B. Li, X. B. Zou, and G. C. Guo, “Nonclassicality of quantum excitation of classical coherent field in photon-loss channel,” Phys. Rev. A 75, 045801 (2007).
[Crossref]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge, 1997).

Zyczkowski, K.

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality,” J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).
[Crossref]

Eur. Phys. J. D (1)

M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, “A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model,” Eur. Phys. J. D 32, 397–408 (2005).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality,” J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

M. B. Harouni, R. Roknizadeh, and M. H. Naderi, “Nonlinear coherent state of an exciton in a wide quantum dot,” J. Phys. B: At. Mol. Opt. Phys. 41, 225501 (2008).
[Crossref]

Laser Phys. (1)

S. Olivares and M. G. A. Paris, “De-Gaussification by inconclusive photon subtraction,” Laser Phys. 16, 1533–1550 (2006).
[Crossref]

Nano Lett. (1)

R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M. Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12, 4336–4340 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).
[Crossref] [PubMed]

Nat. Nanotecnol. (1)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotecnol. 2, 114–120 (2007).
[Crossref]

Nature (10)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature 530, 313–316 (2016).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Nature Phys. (2)

F. Lecocq, J. D. Teufel, J. Aumentado, and R. W. Simmonds, “Resolving the vacuum fluctuations of an optomechanical system using an artificial atom,” Nature Phys. 11, 635–639 (2015).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–893 (2008).
[Crossref]

New J. Phys. (1)

R Alléaume, F Treussart, G Messin, Y Dumeige, J-F Roch, A Beveratos, R Brouri-Tualle, J-P Poizat, and P Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Opt. Commun. (1)

S. S. Shamailov, A. S. Parkins, M. J. Collett, and H.J. Carmichael, “Multi-photon blockade and dressing of the dressed states,” Opt. Commun. 283, 766–772 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. (2)

E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749 (1932).
[Crossref]

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529 (1963).
[Crossref]

Phys. Rev. A (34)

B. M. Ann, Y. Song, J. Kim, D. Yang, and K. An, “Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration,” Phys. Rev. A 92, 023830 (2015).
[Crossref]

Y. H. Zhou, H. Z. Shen, and X. X. Yi, “Unconventional photon blockade with second-order nonlinearity,” Phys. Rev. A 92, 023838 (2015).
[Crossref]

P. D. Nation, J. Suh, and M. P. Blencowe, “Ultrastrong optomechanics incorporating the dynamical Casimir effect,” Phys. Rev. A 93, 022510 (2016).
[Crossref]

A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, and J. Vučković, “Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” Phys. Rev. A 90, 023846 (2014).
[Crossref]

S. B. Li, X. B. Zou, and G. C. Guo, “Nonclassicality of quantum excitation of classical coherent field in photon-loss channel,” Phys. Rev. A 75, 045801 (2007).
[Crossref]

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).
[Crossref]

P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002).
[Crossref]

X. W. Xu, H. Wang, J. Zhang, and Y. X. Liu, “Engineering of nonclassical motional states in optomechanical systems,” Phys. Rev. A 88, 063819 (2013).
[Crossref]

N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236 (1981).
[Crossref]

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[Crossref]

A. C. Pflanzer, O. Romero-Isart, and J. I. Cirac, “Optomechanics assisted by a qubit: from dissipative state preparation to many-partite systems,” Phys. Rev. A 88, 033804 (2014).
[Crossref]

A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013).
[Crossref]

W. W. Deng, G. X. Li, and H. Qin, “Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,” Phys. Rev. A 91, 043831 (2015).
[Crossref]

S. Carlig and M. A. Macovei, “Long-time correlated quantum dynamics of phonon cooling,” Phys. Rev. A 90, 013817 (2014).
[Crossref]

R. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004).
[Crossref]

X. Ma and S. John, “Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing,” Phys. Rev. A 80, 063810 (2009).
[Crossref]

L. Florescu, S. John, T. Quang, and R. Wang, “Theory of a one-atom laser in a photonic band-gap microchip,” Phys. Rev. A 69, 013816 (2004).
[Crossref]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764 (1994).
[Crossref] [PubMed]

M. G. Genoni and M. G. A. Paris, “Quantifying non-Gaussianity for quantum information,” Phys. Rev. A,  82, 052341 (2010).
[Crossref]

G. Adesso, F. DellAnno, S. De Siena, F. Illuminati, and L. A. M. Souza, “Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states,” Phys. Rev. A 79, 040305 (2009).
[Crossref]

Z. Kis, W. Vogel, and L. Davidovich, “Nonlinear coherent states of trapped-atom motion,” Phys. Rev. A 64, 033401 (2001).
[Crossref]

S. Ya. Kilin and A. B. Mikhalychev, “Single-atom laser generates nonlinear coherent states,” Phys. Rev. A 85, 063817 (2012).
[Crossref]

H. Fakhri and A. Hashemi, “Nonclassical properties of the q-coherent and q-cat states of the Biedenharn-Macfarlane q oscillator with q>1,” Phys. Rev. A 93, 013802 (2016).
[Crossref]

R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A 54, 4560 (1996).
[Crossref] [PubMed]

W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes-Cummings dynamics of a trapped ion,” Phys. Rev. A 52, 4214 (1995).
[Crossref] [PubMed]

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

F. DellAnno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
[Crossref]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).
[Crossref]

Phys. Rev. D (2)

S. Dey, “Q-deformed noncommutative cat states and their nonclassical properties,” Phys. Rev. D 91, 044024 (2015).
[Crossref]

S. Dey and A. Fring, “Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations,” Phys. Rev. D 86, 064038 (2012).
[Crossref]

Phys. Rev. Lett. (20)

J. Niset, J. Fiurasek, and N. J. Cerf, “No-go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref] [PubMed]

A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-tolerant linear optical quantum computing with small-amplitude coherent states,” Phys. Rev. Lett. 100, 030503 (2008).
[Crossref] [PubMed]

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).
[Crossref] [PubMed]

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref] [PubMed]

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett. 109, 013603 (2012).
[Crossref] [PubMed]

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).
[Crossref]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vuckovic, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010).
[Crossref] [PubMed]

C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011).
[Crossref] [PubMed]

A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit,” Phys. Rev. Lett. 107, 053602 (2011).
[Crossref] [PubMed]

P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011).
[Crossref] [PubMed]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011).
[Crossref] [PubMed]

G. Via, G. Kirchmair, and O. Romero-Isart, “Strong single-photon coupling in superconducting quantum magnetomechanics,” Phys. Rev. Lett. 114, 143602 (2015).
[Crossref] [PubMed]

G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore, “Intensity correlations of a cooperative system,” Phys. Rev. Lett. 42, 1260 (1979).
[Crossref]

J. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics,” Phys. Rev. Lett. 112, 013601 (2014).
[Crossref] [PubMed]

C. Roy and S. Hughes, “Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects,” Phys. Rev. Lett. 106, 247403 (2011).
[Crossref] [PubMed]

X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).
[Crossref] [PubMed]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

N. J. Cerf, O. Kruger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005).
[Crossref] [PubMed]

T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg, “Nonlinear quantum optomechanics via individual intrinsic two-level defects,” Phys. Rev. Lett. 110, 193602 (2013).
[Crossref] [PubMed]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref] [PubMed]

Phys. Scr. (2)

V. I. Manko, G. Marmo, and E. C. G. Sudarshan, “F-oscillators and nonlinear coherent states,” Phys. Scr. 55, 528 (1997).
[Crossref]

E. M. F. Curado, J-P Gazeau, and Ligia M. C. S. Rodrigues, “Nonlinear coherent states for optimizing quantum information,” Phys. Scr. 82, 038108 (2010).
[Crossref]

Rep. Math. Phys. (1)

R. L. Hudson, “When is the Wigner quasi-probability density non-negative?” Rep. Math. Phys. 6, 249–252 (1974).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. Rep. (1)

R. Leijssen and E. Verhagen, “Strong optomechanical interactions in a sliced photonic crystal nanobeam,” Sci. Rep. 5, 15974 (2015).
[Crossref] [PubMed]

Other (5)

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge, 1997).

J. S. Peng and G. X. Li, Introduction to modern quantum optics (World Scientific, 1998).

C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2004).

J. B. Clark, F. Lecocq, R. W. Simmonds, J Aumentado, and J. D. Teufel, “Observation of Strong Radiation Pressure Forces from Squeezed Light on a Mechanical Oscillator,” http://arxiv.org/abs/1601.02689 (2016).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions (Wiley, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the considered system. A photonic crystal nanobeam is clamped at both ends. The optomechanical microcavity with the frequency ωc can be coupled with the MR of frequency ωm via a combination of radiation pressure and photostriction [49]. The MR can travel fast and alternating expansions and contractions along the x axis, which we refer to as a “breathing” mode [50]. A QD (the small red dot in Fig) driven by a strong laser is within the photonic crystal microcavity.
Fig. 2
Fig. 2 Schematic representation of the LDOS and the relative position of the relevant frequencies considered in our paper. ωb, ωc andωL are the photonic density-of-states bandedge frequency, the cavity frequency and the coherent driving frequency respectively. The vertical arrows represent the emission lines of the Mollow spectrum of the QD resonance fluorescence which central band occurs at the frequency ωL, and the side bands components at ωL ± 2Ω̄.
Fig. 3
Fig. 3 Schematic of the four-level model. The two-photon transition from the ground state |0〉 to the higher excited state |3〉 is resonant.
Fig. 4
Fig. 4 The PND Pn of the MR state in the steady-state regime versus n for different values of χ: the blue corresponds to αp/g1 = 0.11; the red corresponds to αp/g1 = 0.15. The other parameters are as follows: N = 15, Δa = 0, η = 0.305463.
Fig. 5
Fig. 5 The second-order correlation function Pn of the MR state in the steady-state regime versus αp/g1. The other parameters are the same as those in figure 4.
Fig. 6
Fig. 6 The WF of the phonon in the steady-state regime with αp/g1 = 0.15. The other parameters are the same as those in Figure 4.
Fig. 7
Fig. 7 The absolute value PW of the total negative probability of the Wigner function as a function of the parameter αp/g1. The other parameters are the same as those in figure 4.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

H = H 0 + H I ,
H 0 = Δ a 2 σ z + Ω ( σ + + σ ) + Δ c a a + ω m b b + λ Δ λ a λ a λ ,
H I = [ α p a e i Δ p t + g 1 a σ + λ g λ ( ω λ ) a λ σ + h . c . ] + g 2 a a ( b + b ) ,
| + = s | g + c | e , | = c | g s | e ,
H 0 = Ω ¯ R 3 + Δ c a a + ω m b b + λ Δ λ a λ a λ .
H I = { [ g 1 a + λ g λ ( ω λ ) a λ ] ( s c R 3 + c 2 R + s 2 R + ) + h . c . } + α p ( a e i Δ p t + a e i Δ p t ) + g 2 a a ( b + b ) ,
H = e S ( H 0 + H I ) e S ,
H = H 0 + H I 1 + H I 2 + H I 3
H 0 = Ω ¯ R 3 + Δ c a a + ω m b b + λ Δ λ a λ a λ ,
H I 1 = g 1 a e η ( b b ) ( s c R 3 + c 2 R + s 2 R + ) ,
H I 2 = α p a e η ( b b ) e i Δ p t + h . c . ,
H I 3 = λ g λ ( ω λ ) a λ ( s c R 3 + c 2 R + s 2 R + ) + h . c .
e η ( b b ) = e η 2 2 m , n = 0 η m ( η ) n m ! n ! b m b n .
H ˜ I 1 ( t ) = g 1 [ c 2 a R + η s 2 a f 1 ( b b ) b R + e i δ m t + h . c . ] ,
f 1 ( b b ) = n = 0 ( 1 ) n + 1 η 2 n n ! ( n + 1 ) ! b n b n .
H ˜ I 2 ( t ) = α p [ a f 2 ( b b ) e i δ cp t + h . c . ] ,
f 2 ( b b ) = n = 0 ( 1 ) n η 2 n n ! n ! b n b n .
H ˜ I 3 = λ g λ ( ω λ ) a λ [ s c R 3 e i Δ λ t + c 2 R + e i ( Δ λ 2 Ω ¯ t ) s 2 R + e i ( Δ λ + 2 Ω ¯ ) t ] + h . c .
| 0 = | , 0 , | 1 = | , 1 | + , 0 2 , | 2 = | , 1 + | + , 0 2 , | 3 = | , 2 | + , 1 2 .
H J = i = 0 3 E i | i i | .
a = 1 2 ( | 1 + | 2 ) 0 | + | 3 ( 2 + 1 2 1 | + 2 1 2 2 | ) , R + = 1 2 | 0 ( 1 | 2 | ) 1 2 ( | 1 + | 2 ) 3 | .
V I = V 1 + V 2 ,
V 1 = Ω e [ | 3 0 | f 1 ( b b ) b + h . c . ] ,
V 2 = α p [ 2 2 | 1 0 | e i Δ 1 t + 2 2 | 2 0 | e i Δ 2 t + 2 + 1 2 | 3 1 | e i Δ 3 t + 2 1 2 | 3 2 | e i Δ 4 t ] f 2 ( b b ) + h . c .
V 2 = i V 2 ( t ) V 2 ( t ) d t .
V 2 = Ω e [ χ f 2 2 ( b b ) | 3 0 | + h . c . ]
ρ t = 0 t d t Tr R { [ H ˜ int ( t ) , [ H ˜ int ( t ) , ρ T ( t ) ] ] } ,
λ ρ = γ 0 𝒟 [ R 3 ] + γ 𝒟 [ R + ] + γ + 𝒟 [ R + ] ,
c ρ = κ 𝒟 [ a e η ( b b ) ] .
d d t ρ = i [ V 1 + V 2 , ρ ] + λ ρ + c ρ ,
λ ρ = j = 1 2 { γ 2 𝒟 [ | j 0 | ] + γ + 2 𝒟 [ | 0 j | ] + γ 4 𝒟 [ | 3 j | ] + γ + 4 𝒟 [ | j 3 | ] + γ 0 { 𝒟 [ | 0 0 | ] + 𝒟 [ | 1 2 | ] + 𝒟 [ | 2 1 | ] } , c ρ = κ e η 2 4 { j = 1 2 m , n , k = 0 ϒ b m b n | 0 j | ρ | j 0 | b k b m + k n + j = 1 2 m , n , k = 0 B j ϒ b m b n | j 3 | ρ | 3 j | b k b m + k n } κ e η 2 4 j = 1 2 ( 1 + B j ) ( | j j | ρ + ρ | j j | ) ,
( V 1 + V 2 ) | 0 , φ b = 0 ,
[ f 1 ( b b ) b + χ f 2 2 ( b b ) ] | φ b = 0 .
| φ b = n = 0 c n | n ,
n + 1 χ c n [ L n ( 0 ) ( η 2 ) ] 2 c n + 1 L n ( 1 ) ( η 2 ) = 0 ,
| Ψ ˜ = e S | 0 , φ b = | 0 , φ b = | Ψ ,
L n ( 0 ) ( η 2 ) = 0 .
c n = χ n ! [ j = 0 n 1 L j 1 ( 0 ) ( η 2 ) ] 2 j = 0 n 1 L j 1 ( 1 ) ( η 2 ) c 0 ,
P ( n ) = Tr ( ρ | n n | ) ,
g ( 2 ) ( 0 ) = b 2 b 2 s b b s .
g ( 2 ) ( 0 ) = n = 0 n ( n 1 ) | c n | 2 ( n = 0 n | c n | 2 ) 2 .
W ( β ) = 2 π n = 0 ( 1 ) n n | D ( β ) ρ D ( β ) | n ,
P W = | ϖ W ( x , y ) d x d y | ,

Metrics