Abstract

We numerically investigate the optical response of slowly scaling linear chains of mismatched silver nanoparticles. Hybridized plasmon chain resonances manifest unusual local field distributions around the nanoparticles that result from symmetry breaking of the geometry. Importantly, we find localization patterns characterized by bright hot-spots alternated by what we term dark spots. A dark spot is associated to dark plasmons that have collinear and antiparallel dipole moments along the chain. As a result, the field amplification in the dark interjunction gap is extinguished for incident polarization parallel to the chain axis. Despite the strong plasmonic coupling, the nanoparticles on the sides of this dark gap experience a dramatic asymmetric field amplification with amplitude gain contrast > 2×102. Remarkably, also for polarization orthogonal to the axis, gap hot-spots form on resonance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radiation losses and dark mode at light guiding by a linear chain of nanoparticles

Yurii N. Barabanenkov and Mikhail Yu. Barabanenkov
J. Opt. Soc. Am. A 34(3) 321-330 (2017)

Self-assembled flat-faceted nanoparticles chains as a highly-tunable platform for plasmon-enhanced spectroscopy in the infrared

Garikoitz Aguirregabiria, Javier Aizpurua, and Ruben Esteban
Opt. Express 25(12) 13760-13772 (2017)

Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd3+ luminescence

Eduardo Yraola, Laura Sánchez-García, Christos Tserkezis, Pablo Molina, Mariola O Ramírez, Jose Luis Plaza, Javier Aizpurua, and Luisa E. Bausá
Opt. Express 23(12) 15670-15679 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).
  2. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref] [PubMed]
  3. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  4. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref] [PubMed]
  5. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
    [Crossref] [PubMed]
  6. G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
    [Crossref] [PubMed]
  7. M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
    [Crossref] [PubMed]
  8. C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
    [Crossref] [PubMed]
  9. R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
    [Crossref] [PubMed]
  10. P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
    [Crossref]
  11. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl.  4, e294 (2015).
    [Crossref]
  12. J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
    [Crossref] [PubMed]
  13. J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
    [Crossref]
  14. S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
    [Crossref]
  15. C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
    [Crossref]
  16. M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
    [Crossref] [PubMed]
  17. B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
    [Crossref] [PubMed]
  18. C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, “Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field,” Phys. Rev. Lett. 109, 017402 (2012).
    [Crossref] [PubMed]
  19. G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
    [Crossref] [PubMed]
  20. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [Crossref] [PubMed]
  21. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]

2016 (2)

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

2015 (4)

P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
[Crossref]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl.  4, e294 (2015).
[Crossref]

G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
[Crossref] [PubMed]

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

2014 (2)

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

2013 (2)

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

2012 (3)

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref] [PubMed]

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, “Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field,” Phys. Rev. Lett. 109, 017402 (2012).
[Crossref] [PubMed]

2011 (2)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

2010 (2)

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref] [PubMed]

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

2003 (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Aizpurua, J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

Antoniou, N.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Auriemma, F.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

Baccigalupi, L.

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Bachelot, R.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Bailo, E.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

Baumberg, J. J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

Beitner, J.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Bharadwaj, P.

C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, “Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field,” Phys. Rev. Lett. 109, 017402 (2012).
[Crossref] [PubMed]

Bokor, J.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

Boltasseva, A.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Brown, L. V.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref] [PubMed]

Cabrini, S.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

Capasso, F.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Cecchini, M. P.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref] [PubMed]

Centi, S.

P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
[Crossref]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Chen, S.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

de Angelis, M.

P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
[Crossref]

de Felice, M.

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

De Rosa, C.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

Deng, Z.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

Di Girolamo, R.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

Diletto, C.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

Ding, B.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

Dochshanov, A.

G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
[Crossref] [PubMed]

Dridi, M.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Edel, J. B.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref] [PubMed]

Esteban, R.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl.  4, e294 (2015).
[Crossref]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Giglio, R.

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Gray, S. K.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Haggui, M.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Höppener, C.

C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, “Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field,” Phys. Rev. Lett. 109, 017402 (2012).
[Crossref] [PubMed]

Isticato, R.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kildishev, A. V.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Kornyshev, A. A.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Lapin, Z. J.

C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, “Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field,” Phys. Rev. Lett. 109, 017402 (2012).
[Crossref] [PubMed]

Lassiter, J. B.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref] [PubMed]

Li, J.-F.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).

Malafronte, A.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

Marguet, S.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Matteini, P.

P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
[Crossref]

Meng, L.-Y.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Morvillo, P.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

Mueller, J. B.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Ndukaife, J. C.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Nnanna, A. G. A.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Novotny, L.

C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, “Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field,” Phys. Rev. Lett. 109, 017402 (2012).
[Crossref] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Paget, J.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref] [PubMed]

Perez, H.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Pesce, G.

G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
[Crossref] [PubMed]

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Pini, R.

P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
[Crossref]

Plain, J.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Qian, L.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Ricca, E.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Rusciano, G.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
[Crossref] [PubMed]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Sasso, A.

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
[Crossref] [PubMed]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Schatz, G. C.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Shan, H.-Y.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Sirec, T.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Sobhani, H.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref] [PubMed]

Stockman, M.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl.  4, e294 (2015).
[Crossref]

Taylor, R. W.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

Tian, Z.-Q.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Tserkezis, C.

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

Turek, V. A.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref] [PubMed]

Ulivi, L.

P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
[Crossref]

Wang, Q.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Wereley, S. T.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Wiederrecht, G. P.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

Williams, C. T.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Yan, H.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

Yang, Z.-L.

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

Yuan, G.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.-C.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Zito, G.

G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
[Crossref] [PubMed]

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Zuckermann, R. N.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

ACS Nano (4)

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref] [PubMed]

S. Chen, L.-Y. Meng, H.-Y. Shan, J.-F. Li, L. Qian, C. T. Williams, Z.-L. Yang, and Z.-Q. Tian, “How to light special hot spots in multiparticle–film configurations,” ACS Nano 10, 581–587 (2016).
[Crossref]

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6, 1299–1307 (2012).
[Crossref] [PubMed]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

Chem. Rev. (2)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by dna origami,” J. Am. Chem. Soc. 132, 3248–3249 (2010).
[Crossref] [PubMed]

Light: Sci. Appl (1)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl.  4, e294 (2015).
[Crossref]

Nano Lett. (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Nanosc. (1)

P. Matteini, M. de Angelis, L. Ulivi, S. Centi, and R. Pini, “Concave gold nanocube assemblies as nanotraps for surface-enhanced raman scattering-based detection of proteins,” Nanosc. 7, 3474–3480 (2015).
[Crossref]

Nanoscale (1)

G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, and A. Sasso, “Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure,” Nanoscale 7, 8593–8606 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Particle Particle Syst. Characterization (1)

C. Tserkezis, R. W. Taylor, J. Beitner, R. Esteban, J. J. Baumberg, and J. Aizpurua, “Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps,” Particle Particle Syst. Characterization 31, 152–160 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

C. De Rosa, F. Auriemma, C. Diletto, R. Di Girolamo, A. Malafronte, P. Morvillo, G. Zito, G. Rusciano, G. Pesce, and A. Sasso, “Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Phys. Rev. Lett. (2)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, “Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field,” Phys. Rev. Lett. 109, 017402 (2012).
[Crossref] [PubMed]

PLoS ONE (1)

R. Isticato, T. Sirec, R. Giglio, L. Baccigalupi, G. Rusciano, G. Pesce, G. Zito, A. Sasso, M. de Felice, and E. Ricca, “Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH,” PLoS ONE 8, e74949 (2013).
[Crossref] [PubMed]

Science (1)

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) Schematic layout of the hexamer of silver spheres (f = 1.0). (b) Family of SCS spectra parametrized by the isotropic scale factor f for plane wave linearly polarized along the axis chain. (c) Surface charge density modes (wireframed on NP surfaces) and overlaid G-map for different LSP modes at f = 1.0, calculated in the xy midplane of the chain for polarization parallel to the chain axis. (d) Field enhancement cross-section along the chain axis for the same LSP modes depicted in (c) (curves are vertically shifted for clarity).
Fig. 2
Fig. 2 (a) Surface charge density modes and overlaid G-map at SM for f = 1.5, λo = 390 nm in Fig. 1(b), for polarization parallel to the chain axis. (b) Close-up around g34. (c) Electric field gain along the chain axis: in g34, the gain is damped of nearly 2 orders of magnitude. (d) SCS spectrum (blue) and dipole moment ratio between small trimer (p2) and large trimer (p1) for polarization along the axis: the dipoles become antiparallel in correspondence of SM. (e) Optimum found at g34 = 0.8 nm (f = 1.56): exactly Es = E0 in the dark gap (colormap inverted for clarity). (f) Scattering and absorption cross section (ACS) in case of polarization orthogonal to the chain axis, for geometric paramters as in (e). (g) Surface charge density and G-map at 365 nm (maximum near-field) for orthogonal polarization: gap hot-spots form also in this case.

Metrics