Abstract

Here, we report experimental demonstration of dynamic control and enhancement of second harmonic generation and two photon excited photoluminescence in CdS nanoplates via an electromechanically reconfigurable Fabry-Perot (FP) microcavity. Microcavity coupled CdS nanoplates can be configured as a single or dual wavelength nonlinear light source by tuning the pump wavelength while the output intensities can be tuned by the on-chip control voltage. Our work realizes a reconfigurable device platform with insight toward advanced optical devices based on semiconductor nanoplates for next generation on-chip tunable light sources, sensors and optomechanical systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Free spectral range electrical tuning of a high quality on-chip microcavity

Christiaan Bekker, Christopher G. Baker, Rachpon Kalra, Han-Hao Cheng, Bei-Bei Li, Varun Prakash, and Warwick P. Bowen
Opt. Express 26(26) 33649-33670 (2018)

Electro-tunable liquid crystal laser based on high-Q Fabry-Pérot microcavity

Wonsuk Lee, Wenjie Wang, Guksik Lee, Seong Ho Ryu, Xudong Fan, and Dong Ki Yoon
Opt. Express 25(2) 874-880 (2017)

Optical driven electromechanical transistor based on tunneling effect

Leisheng Jin and Lijie Li
Opt. Lett. 40(8) 1798-1801 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [Crossref] [PubMed]
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  3. N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
    [Crossref] [PubMed]
  4. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
    [Crossref] [PubMed]
  5. M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
    [Crossref]
  6. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
    [Crossref]
  7. C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
    [Crossref]
  8. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  9. C. M. Lieber, “Nanoscale science and technology: Building a big future from small things,” MRS Bull. 28(07), 486–491 (2003).
    [Crossref]
  10. W. Lu and C. M. Lieber, “Semiconductor nanowires,” J. Phys. D Appl. Phys. 39(21), R387–R406 (2006).
    [Crossref]
  11. P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
    [Crossref] [PubMed]
  12. M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
    [Crossref]
  13. C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
    [Crossref] [PubMed]
  14. L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).
  15. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
    [Crossref] [PubMed]
  16. A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
    [Crossref]
  17. M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
    [Crossref] [PubMed]
  18. R. W. Boyd, Nonlinear Optics (Third Edition) (Academic Press Elsevier, Burlington, 2008).
  19. R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl Phys A-Mater 85(3), 209–215 (2006).
    [Crossref]
  20. M. L. Ren, S. Y. Liu, B. L. Wang, B. Q. Chen, J. Li, and Z. Y. Li, “Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale,” Opt. Express 22(23), 28653–28661 (2014).
    [Crossref] [PubMed]
  21. M. L. Ren, R. Agarwal, W. Liu, and R. Agarwal, “Crystallographic Characterization of II-VI Semiconducting Nanostructures via Optical Second Harmonic Generation,” Nano Lett. 15(11), 7341–7346 (2015).
    [Crossref] [PubMed]
  22. F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
    [Crossref] [PubMed]
  23. C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
    [Crossref] [PubMed]
  24. S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
    [Crossref]
  25. Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
    [Crossref] [PubMed]
  26. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ² microring resonators,” Opt. Express 20(7), 7526–7543 (2012).
    [Crossref] [PubMed]
  27. T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
    [Crossref]
  28. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
    [Crossref] [PubMed]
  29. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
    [Crossref] [PubMed]
  30. E. Descrovi, C. Ricciardi, F. Giorgis, G. Lérondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced Second-Harmonic Generation in silicon-based microcavities,” Opt. Express 15(7), 4159–4167 (2007).
    [Crossref] [PubMed]
  31. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [Crossref] [PubMed]
  32. M. L. Ren and Z. Y. Li, “Enhanced nonlinear frequency conversion in defective nonlinear photonic crystals with designed polarization distribution,” J. Opt. Soc. Am. B 27(8), 1551–1560 (2010).
    [Crossref]

2016 (1)

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

2015 (1)

M. L. Ren, R. Agarwal, W. Liu, and R. Agarwal, “Crystallographic Characterization of II-VI Semiconducting Nanostructures via Optical Second Harmonic Generation,” Nano Lett. 15(11), 7341–7346 (2015).
[Crossref] [PubMed]

2014 (5)

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

M. L. Ren, S. Y. Liu, B. L. Wang, B. Q. Chen, J. Li, and Z. Y. Li, “Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale,” Opt. Express 22(23), 28653–28661 (2014).
[Crossref] [PubMed]

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

2013 (2)

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

2012 (2)

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ² microring resonators,” Opt. Express 20(7), 7526–7543 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

M. L. Ren and Z. Y. Li, “Enhanced nonlinear frequency conversion in defective nonlinear photonic crystals with designed polarization distribution,” J. Opt. Soc. Am. B 27(8), 1551–1560 (2010).
[Crossref]

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

2007 (2)

2006 (4)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

W. Lu and C. M. Lieber, “Semiconductor nanowires,” J. Phys. D Appl. Phys. 39(21), R387–R406 (2006).
[Crossref]

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl Phys A-Mater 85(3), 209–215 (2006).
[Crossref]

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

2005 (2)

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

2004 (1)

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

2003 (2)

C. M. Lieber, “Nanoscale science and technology: Building a big future from small things,” MRS Bull. 28(07), 486–491 (2003).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

2001 (1)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Agarwal, R.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

M. L. Ren, R. Agarwal, W. Liu, and R. Agarwal, “Crystallographic Characterization of II-VI Semiconducting Nanostructures via Optical Second Harmonic Generation,” Nano Lett. 15(11), 7341–7346 (2015).
[Crossref] [PubMed]

M. L. Ren, R. Agarwal, W. Liu, and R. Agarwal, “Crystallographic Characterization of II-VI Semiconducting Nanostructures via Optical Second Harmonic Generation,” Nano Lett. 15(11), 7341–7346 (2015).
[Crossref] [PubMed]

M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
[Crossref] [PubMed]

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl Phys A-Mater 85(3), 209–215 (2006).
[Crossref]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Andrews, S. C.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Aspetti, C. O.

M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
[Crossref] [PubMed]

Bachelot, R.

Barrelet, C. J.

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bi, Z.-F.

Biermann, K.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Blaize, S.

Brittman, S.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Brongersma, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Buckley, S.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Capasso, F.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Chen, B. Q.

Cho, C.-H.

C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
[Crossref] [PubMed]

Crespi, V.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Cubukcu, E.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Cui, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Dasgupta, N. P.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Dean, C. R.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

Descrovi, E.

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Duchesne, D.

Elías, A. L.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Fardy, M.

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

Fong, K. Y.

Foster, M. A.

Gaeta, A. L.

Gao, H.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Genty, G.

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Gesuele, F.

Giorgis, F.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Goldberger, J.

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Greytak, A. B.

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

Hashemi, H.

Heinz, T. F.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

Hou, J.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Huang, Y.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Hyvärinen, O.

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Janisch, C.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Johnson, A. T. C.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Johnson, S. G.

Kang, J.-H.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Kauranen, M.

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Kikkawa, J. M.

C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
[Crossref] [PubMed]

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Lagoudakis, K. G.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Law, M.

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Lérondel, G.

Lettieri, S.

Levy, J. S.

Li, J.

Li, Y.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

Li, Z. Y.

Lieber, C. M.

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
[Crossref]

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

W. Lu and C. M. Lieber, “Semiconductor nanowires,” J. Phys. D Appl. Phys. 39(21), R387–R406 (2006).
[Crossref]

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl Phys A-Mater 85(3), 209–215 (2006).
[Crossref]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

C. M. Lieber, “Nanoscale science and technology: Building a big future from small things,” MRS Bull. 28(07), 486–491 (2003).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Lim, J.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Lipson, M.

Liscidini, M.

Liu, C.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Liu, S. Y.

Liu, W.

M. L. Ren, R. Agarwal, W. Liu, and R. Agarwal, “Crystallographic Characterization of II-VI Semiconducting Nanostructures via Optical Second Harmonic Generation,” Nano Lett. 15(11), 7341–7346 (2015).
[Crossref] [PubMed]

M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Liu, Z.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

Loncar, M.

Lu, P. X.

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

Lu, W.

W. Lu and C. M. Lieber, “Semiconductor nanowires,” J. Phys. D Appl. Phys. 39(21), R387–R406 (2006).
[Crossref]

Ma, D.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maddalena, P.

Mak, K. F.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

Mehta, N.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Muller, S.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Nam, S.-W.

C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
[Crossref] [PubMed]

Naylor, C. H.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Ning, T.

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Palacios, T.

Pang, C. X.

Perea-López, N.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Pernice, W.

Petykiewicz, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Pietarinen, H.

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Radulaski, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Rao, Y.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

Reed, J. C.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Ren, M.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Ren, M. L.

Ren, M.-L.

M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Ricciardi, C.

Rodriguez, A. W.

Ronning, C.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Royer, P.

Ryu, K. K.

Schuck, C.

Shen, G. Z.

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

Simonen, J.

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Sun, J.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Sun, L.

M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Tang, H. X.

Terrones, M.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Turk, M. E.

C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
[Crossref] [PubMed]

Vuckovic, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Wang, B. L.

Wang, J.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Wang, K.

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

Wang, K.-M.

Wang, S.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

Wang, Y.

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Wang, Z. L.

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
[Crossref]

Wegener, M.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

Xiong, C.

Yan, R.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

Yan, R. X.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, G.

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

Yang, P.

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

Yang, P. D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Yi, F.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

You, Y.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, L. C.

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhu, H.

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

ACS Photonics (1)

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Adv. Mater. (1)

N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications,” Adv. Mater. 26(14), 2137–2184 (2014).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34(1), 83–122 (2004).
[Crossref]

Appl Phys A-Mater (1)

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl Phys A-Mater 85(3), 209–215 (2006).
[Crossref]

Appl. Phys. Lett. (3)

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

L. C. Zhang, K. Wang, Z. Liu, G. Yang, G. Z. Shen, and P. X. Lu, “Two-photon pumped lasing in a single CdS microwire,” Appl. Phys. Lett. 102, 211915 (2013).

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

W. Lu and C. M. Lieber, “Semiconductor nanowires,” J. Phys. D Appl. Phys. 39(21), R387–R406 (2006).
[Crossref]

Mater. Today (1)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[Crossref]

MRS Bull. (2)

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
[Crossref]

C. M. Lieber, “Nanoscale science and technology: Building a big future from small things,” MRS Bull. 28(07), 486–491 (2003).
[Crossref]

Nano Lett. (5)

P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13(7), 3329–3333 (2013).
[Crossref] [PubMed]

M. L. Ren, R. Agarwal, W. Liu, and R. Agarwal, “Crystallographic Characterization of II-VI Semiconducting Nanostructures via Optical Second Harmonic Generation,” Nano Lett. 15(11), 7341–7346 (2015).
[Crossref] [PubMed]

F. Yi, M. Ren, J. C. Reed, H. Zhu, J. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, and E. Cubukcu, “Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity,” Nano Lett. 16(3), 1631–1636 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

M.-L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater. 10(9), 669–675 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Nature (3)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Sci. Rep. (1)

C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, and Z. Liu, “Extraordinary Second Harmonic Generation in tungsten disulfide monolayers,” Sci. Rep. 4, 5530 (2014).
[Crossref] [PubMed]

Science (1)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010).
[Crossref]

Other (1)

R. W. Boyd, Nonlinear Optics (Third Edition) (Academic Press Elsevier, Burlington, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of a CdS nanoplates embedded in a voltage controlled widely tunable electromechanical micro-FP cavity. Iω1: pump wave; Iω2: output wave (SHG and/or TPL). The inset shows the image of the nanoplate taken by the optical microscope in the SHG measurement setup. The typical size of the nanoplate is 60 μm × 20 μm. (b) The spectral reflectance of the DBR (blue dotted line) and the micro-FP cavity (red solid line) measured from the glass side, respectively. Here the control voltage of the micro-FP is 0 V and the corresponding cavity length of the micro-FP is 7.65 μm.
Fig. 2
Fig. 2 (a) The output spectra of the micro-FP controlled CdS nanoplate as a function of the pump wavelength scanned from 850 nm to 1000 nm; (b), (c), (d) The selected output spectra of the cavity controlled CdS nanoplate pumped at 910 nm (TPL dominant mode), 945 nm (dual wavelength mode) and 980 nm (SHG dominant mode), respectively.
Fig. 3
Fig. 3 (a) The voltage dependent electromechanical tuning of the spectral reflectance of the micro-FP, measured at the center point of the membrane and (b) the corresponding peak wavelengths for the two modes M1 and M2. (c) The mechanical deflection at the center point of the membrane ΔZ0, calculated from the measured peak wavelengths of M1 and M2 using the transfer-matrix method and (d) The voltage dependence of the mechanical deflection across the center line of the membrane ΔZ(x).
Fig. 4
Fig. 4 (a) The output intensities for SHG and TPL from the micro-cavity coupled CdS nanoplates as a function of the control voltage scanned from 0 V to 50 V. Here the pump wavelength is fixed at 950 nm (b) The voltage dependence of the peak output intensities for SHG (ISHG) and TPL (ITPL) and (c) The voltage dependence of the peak wavelengths for SHG (λSHG) and TPL (λTPL). (d) The output spectra of the micro-cavity coupled CdS nanoplates pumped at the dual-wavelength mode with the control voltage of 0 V and 45 V respectively.
Fig. 5
Fig. 5 Estimation of the CdS nanoplate thickness from the measured voltage dependent SHG.Since the nanoplates inside the micro-FP cavity are located randomly on top of the DBR mirror, it is difficult to directly measure their thicknesses. However, we are able to extract the thickness of the tested nanoplate by fitting the measured SHG output as a function of the applied voltage (Vapp) with the TMM calculation. The pump wavelength and initial cavity length used in the simulation are 950 nm and 7.625 μm, respectively. The thickness of the measured nanoplate is determined to be 125 nm.
Fig. 6
Fig. 6 (a) Normalized second harmonic wave intensity as a function of the nanoplate thickness and the cavity length calculated using TMM. (b) The calculated maximum and (c) minimum second harmonic output intensity as a function of the nanoplate thickness. (d) The achievable ON/OFF ratio, a measure of the modulation depth, between the maximum (ON-state) and the minimum (OFF-state) for the second harmonic output as a function of the nanoplate thickness.

Metrics