Abstract

Although the numerous advantages of polymer optical fiber (POF) sensors have been applied in different fields, the measurement consistency and sensitivity of POF evanescent wave (EW) sensors are still affected by its thermal stability and water absorption. Therefore, we perform a study to demonstrate the mechanism of the effect of heat treatments on physical and optical properties of POF EW sensors. We investigate the surface morphology, composition, refractive index, geometry, and weight of the fiber-sensing region subjected to water and vacuum heat treatments. We examine the spectral transmission and transmitted light intensity of POF sensors. We present a theoretical investigation of the effect of heat treatments on the sensitivity of POF EW sensors. The performance of the prepared sensor is evaluated using glucose and Chlorella pyrenoidosa analytes. We discovered that the spectral transmission and transmitted light intensity of the fibers shows little effect of vacuum heat treatments. In particular, the sensors, which subject to vacuum heat treatment at 110 °C for 3 h, exhibit temperature-independent measuring consistency and high sensitivity in glucose solutions in the temperature range 15–60 °C and also show high sensitivity in Chlorella pyrenoidosa solutions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature

Arnaldo Leal-Junior, Anselmo Frizera, Carlos Marques, and Maria José Pontes
Appl. Opt. 57(7) 1717-1723 (2018)

Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

Getinet Woyessa, Andrea Fasano, Alessio Stefani, Christos Markos, Kristian Nielsen, Henrik K. Rasmussen, and Ole Bang
Opt. Express 24(2) 1253-1260 (2016)

Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281(5379), 962–967 (1998).
    [Crossref] [PubMed]
  2. Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
    [Crossref]
  3. M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, and B. Roth, “Flexible, fast, and low-cost production process for polymer based diffractive optics,” Opt. Express 23(3), 3614–3622 (2015).
    [Crossref] [PubMed]
  4. N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
    [Crossref] [PubMed]
  5. L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
    [Crossref] [PubMed]
  6. Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
    [Crossref]
  7. K. Makino, T. Kado, A. Inoue, and Y. Koike, “Low loss graded index polymer optical fiber with high stability under damp heat conditions,” Opt. Express 20(12), 12893–12898 (2012).
    [Crossref] [PubMed]
  8. M. Sato, M. Hirai, T. Ishigure, and Y. Koike, “High temperature resistant graded-index polymer optical fiber,” J. Lightwave Technol. 18(12), 2139–2145 (2000).
    [Crossref]
  9. J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
    [Crossref]
  10. P. Stajanca, O. Cetinkaya, M. Schukar, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
    [Crossref]
  11. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  12. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
    [Crossref]
  13. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  14. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  15. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  16. I. L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  17. Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China, Ser. Biol. Chem. 41, 239–246 (1998).
  18. J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel., “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30(27), 3944–3951 (1991).
    [Crossref] [PubMed]
  19. N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
    [Crossref] [PubMed]
  20. Q. Liao, L. Li, R. Chen, and X. Zhu, “A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation,” Bioresour. Technol. 161, 186–191 (2014).
    [Crossref] [PubMed]
  21. H. C. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, “Quantum dot and silica nanoparticle doped polymer optical fibers,” Opt. Express 15(16), 9989–9994 (2007).
    [Crossref] [PubMed]
  22. A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, and H. Y. Kim, “Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process,” J. Mater. Chem. A Mater. Energy Sustain. 1(36), 11001–11010 (2013).
    [Crossref]
  23. T. Ishigure, M. Sato, A. Kondo, Y. Tsukimori, and Y. Koike, “Graded-index polymer optical fiber with high temperature and high humidity stability,” J. Lightwave Technol. 20(10), 1818–1825 (2002).
    [Crossref]
  24. S. O. Han and L. T. Drzal, “Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin,” Eur. Polym. J. 39(9), 1791–1799 (2003).
    [Crossref]
  25. M. Ree, T. L. Nunes, and K. J. R. Chen, “Structure and properties of a photosensitive polyimide: Effect of photosensitive group,” J. Polym. Sci. Pol. Phys. 33(3), 453–465 (1995).
    [Crossref]
  26. Y. Tamai, H. Tanaka, and K. Nakanishi, “Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics,” Macromolecules 29(21), 6761–6769 (1996).
    [Crossref]
  27. M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30(23), 3129–3131 (2005).
    [Crossref] [PubMed]
  28. C. Sheng, H. Liu, S. Zhu, and D. A. Genov, “Active control of electromagnetic radiation through an enhanced thermo-optic effect,” Sci. Rep. 5, 8835 (2015).
    [Crossref] [PubMed]
  29. C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
    [Crossref] [PubMed]
  30. J. B. Puthoff, J. E. Jakes, H. Cao, and D. S. Stone, “Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep,” J. Mater. Res. 24(03), 1279–1290 (2009).
    [Crossref]
  31. J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quant. 7(5), 836–844 (2001).
    [Crossref]
  32. E. G. Strekalova, M. G. Mazza, H. E. Stanley, and G. Franzese, “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement,” Phys. Rev. Lett. 106(14), 145701 (2011).
    [Crossref] [PubMed]
  33. H. E. Arabi, S. An, and K. Oh, “Fiber optic engine for micro projection display,” Opt. Express 18(5), 4655–4663 (2010).
    [Crossref] [PubMed]
  34. N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
    [Crossref] [PubMed]

2016 (4)

2015 (4)

M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, and B. Roth, “Flexible, fast, and low-cost production process for polymer based diffractive optics,” Opt. Express 23(3), 3614–3622 (2015).
[Crossref] [PubMed]

C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

C. Sheng, H. Liu, S. Zhu, and D. A. Genov, “Active control of electromagnetic radiation through an enhanced thermo-optic effect,” Sci. Rep. 5, 8835 (2015).
[Crossref] [PubMed]

2014 (3)

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

Q. Liao, L. Li, R. Chen, and X. Zhu, “A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation,” Bioresour. Technol. 161, 186–191 (2014).
[Crossref] [PubMed]

I. L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

2011 (2)

E. G. Strekalova, M. G. Mazza, H. E. Stanley, and G. Franzese, “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement,” Phys. Rev. Lett. 106(14), 145701 (2011).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

2010 (1)

2009 (3)

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

J. B. Puthoff, J. E. Jakes, H. Cao, and D. S. Stone, “Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep,” J. Mater. Res. 24(03), 1279–1290 (2009).
[Crossref]

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

2007 (1)

2005 (1)

2004 (1)

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

2003 (1)

S. O. Han and L. T. Drzal, “Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin,” Eur. Polym. J. 39(9), 1791–1799 (2003).
[Crossref]

2002 (1)

2001 (1)

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quant. 7(5), 836–844 (2001).
[Crossref]

2000 (1)

1998 (2)

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China, Ser. Biol. Chem. 41, 239–246 (1998).

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281(5379), 962–967 (1998).
[Crossref] [PubMed]

1996 (1)

Y. Tamai, H. Tanaka, and K. Nakanishi, “Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics,” Macromolecules 29(21), 6761–6769 (1996).
[Crossref]

1995 (1)

M. Ree, T. L. Nunes, and K. J. R. Chen, “Structure and properties of a photosensitive polyimide: Effect of photosensitive group,” J. Polym. Sci. Pol. Phys. 33(3), 453–465 (1995).
[Crossref]

1991 (2)

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
[Crossref]

J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel., “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30(27), 3944–3951 (1991).
[Crossref] [PubMed]

Ai, X. C.

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

An, S.

Andresen, S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Arabi, H. E.

Argyros, A.

Arrue, J.

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quant. 7(5), 836–844 (2001).
[Crossref]

Asai, M.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Asano, H.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
[Crossref]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

I. L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Barakat, N. A. M.

A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, and H. Y. Kim, “Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process,” J. Mater. Chem. A Mater. Energy Sustain. 1(36), 11001–11010 (2013).
[Crossref]

Barbe, C.

Barton, G.

Barton, J. S.

Bennion, I.

Beverina, L.

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

Boroz, K.

Bundalo, I. L.

Cao, H.

J. B. Puthoff, J. E. Jakes, H. Cao, and D. S. Stone, “Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep,” J. Mater. Res. 24(03), 1279–1290 (2009).
[Crossref]

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Chen, K. J. R.

M. Ree, T. L. Nunes, and K. J. R. Chen, “Structure and properties of a photosensitive polyimide: Effect of photosensitive group,” J. Polym. Sci. Pol. Phys. 33(3), 453–465 (1995).
[Crossref]

Chen, R.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Q. Liao, L. Li, R. Chen, and X. Zhu, “A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation,” Bioresour. Technol. 161, 186–191 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

Crippa, M.

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

Dobb, H.

Drzal, L. T.

S. O. Han and L. T. Drzal, “Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin,” Eur. Polym. J. 39(9), 1791–1799 (2003).
[Crossref]

Durana, G.

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quant. 7(5), 836–844 (2001).
[Crossref]

El-Deen, A. G.

A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, and H. Y. Kim, “Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process,” J. Mater. Chem. A Mater. Energy Sustain. 1(36), 11001–11010 (2013).
[Crossref]

Fasano, A.

Fender, A.

Finnie, K.

Franzese, G.

E. G. Strekalova, M. G. Mazza, H. E. Stanley, and G. Franzese, “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement,” Phys. Rev. Lett. 106(14), 145701 (2011).
[Crossref] [PubMed]

Gao, R.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281(5379), 962–967 (1998).
[Crossref] [PubMed]

Garito, A. F.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281(5379), 962–967 (1998).
[Crossref] [PubMed]

Genov, D. A.

C. Sheng, H. Liu, S. Zhu, and D. A. Genov, “Active control of electromagnetic radiation through an enhanced thermo-optic effect,” Sci. Rep. 5, 8835 (2015).
[Crossref] [PubMed]

Guo, X. Q.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China, Ser. Biol. Chem. 41, 239–246 (1998).

Han, B. X.

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

Han, S. O.

S. O. Han and L. T. Drzal, “Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin,” Eur. Polym. J. 39(9), 1791–1799 (2003).
[Crossref]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

He, J.

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

Heo, J.

Herholdt-Rasmussen, N.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hirai, M.

Huang, Y.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Inoue, A.

Ishigure, T.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Jakes, J. E.

J. B. Puthoff, J. E. Jakes, H. Cao, and D. S. Stone, “Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep,” J. Mater. Res. 24(03), 1279–1290 (2009).
[Crossref]

Jones, J. D.

Kado, T.

Khalil, K. A.

A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, and H. Y. Kim, “Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process,” J. Mater. Chem. A Mater. Energy Sustain. 1(36), 11001–11010 (2013).
[Crossref]

Kim, H. Y.

A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, and H. Y. Kim, “Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process,” J. Mater. Chem. A Mater. Energy Sustain. 1(36), 11001–11010 (2013).
[Crossref]

Koike, Y.

Kondo, A.

Kong, L.

Krebber, K.

Ladouceur, F.

Li, L.

Q. Liao, L. Li, R. Chen, and X. Zhu, “A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation,” Bioresour. Technol. 161, 186–191 (2014).
[Crossref] [PubMed]

Liao, Q.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Q. Liao, L. Li, R. Chen, and X. Zhu, “A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation,” Bioresour. Technol. 161, 186–191 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

Liu, H.

C. Sheng, H. Liu, S. Zhu, and D. A. Genov, “Active control of electromagnetic radiation through an enhanced thermo-optic effect,” Sci. Rep. 5, 8835 (2015).
[Crossref] [PubMed]

Liu, Z. M.

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

MacPherson, W. N.

Makino, K.

Markos, C.

Marques, C. A. F.

Mateo, J.

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quant. 7(5), 836–844 (2001).
[Crossref]

Mazza, M. G.

E. G. Strekalova, M. G. Mazza, H. E. Stanley, and G. Franzese, “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement,” Phys. Rev. Lett. 106(14), 145701 (2011).
[Crossref] [PubMed]

McNiven, S.

Meinardi, F.

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

Monguzzi, A.

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

Nakanishi, K.

Y. Tamai, H. Tanaka, and K. Nakanishi, “Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics,” Macromolecules 29(21), 6761–6769 (1996).
[Crossref]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

Nunes, T. L.

M. Ree, T. L. Nunes, and K. J. R. Chen, “Structure and properties of a photosensitive polyimide: Effect of photosensitive group,” J. Polym. Sci. Pol. Phys. 33(3), 453–465 (1995).
[Crossref]

Oh, K.

Ohara, S.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
[Crossref]

Pagani, G. A.

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

Peng, G. D.

Puthoff, J. B.

J. B. Puthoff, J. E. Jakes, H. Cao, and D. S. Stone, “Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep,” J. Mater. Res. 24(03), 1279–1290 (2009).
[Crossref]

Rahlves, M.

Rasmussen, H. K.

Ree, M.

M. Ree, T. L. Nunes, and K. J. R. Chen, “Structure and properties of a photosensitive polyimide: Effect of photosensitive group,” J. Polym. Sci. Pol. Phys. 33(3), 453–465 (1995).
[Crossref]

Reithmeier, E.

Rezem, M.

Rodrigues, M.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Roth, B.

Saggese, S. J.

Sassi, M.

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

Sato, M.

Schlangen, S.

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Sheng, C.

C. Sheng, H. Liu, S. Zhu, and D. A. Genov, “Active control of electromagnetic radiation through an enhanced thermo-optic effect,” Sci. Rep. 5, 8835 (2015).
[Crossref] [PubMed]

Sigel, G. H.

Silva-López, M.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stajanca, P.

Stanley, H. E.

E. G. Strekalova, M. G. Mazza, H. E. Stanley, and G. Franzese, “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement,” Phys. Rev. Lett. 106(14), 145701 (2011).
[Crossref] [PubMed]

Stefani, A.

Stone, D. S.

J. B. Puthoff, J. E. Jakes, H. Cao, and D. S. Stone, “Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep,” J. Mater. Res. 24(03), 1279–1290 (2009).
[Crossref]

Strekalova, E. G.

E. G. Strekalova, M. G. Mazza, H. E. Stanley, and G. Franzese, “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement,” Phys. Rev. Lett. 106(14), 145701 (2011).
[Crossref] [PubMed]

Sun, Y.

Taketani, N.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
[Crossref]

Takezawa, Y.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
[Crossref]

Tamai, Y.

Y. Tamai, H. Tanaka, and K. Nakanishi, “Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics,” Macromolecules 29(21), 6761–6769 (1996).
[Crossref]

Tanaka, H.

Y. Tamai, H. Tanaka, and K. Nakanishi, “Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics,” Macromolecules 29(21), 6761–6769 (1996).
[Crossref]

Tanno, S.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
[Crossref]

Tsukimori, Y.

Tubino, R.

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

van Eijkelenborg, M. A.

Wang, D. Y.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China, Ser. Biol. Chem. 41, 239–246 (1998).

Wang, J.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281(5379), 962–967 (1998).
[Crossref] [PubMed]

Wang, Y.

Webb, D. J.

Woyessa, G.

Xu, J.

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

Xu, J. G.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China, Ser. Biol. Chem. 41, 239–246 (1998).

Yang, G. Y.

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

Yu, H. C.

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Zhang, L.

Zhao, D.

Zhao, M.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Zhao, Y. B.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China, Ser. Biol. Chem. 41, 239–246 (1998).

Zhong, N.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

Zhu, S.

C. Sheng, H. Liu, S. Zhu, and D. A. Genov, “Active control of electromagnetic radiation through an enhanced thermo-optic effect,” Sci. Rep. 5, 8835 (2015).
[Crossref] [PubMed]

Zhu, X.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

Q. Liao, L. Li, R. Chen, and X. Zhu, “A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation,” Bioresour. Technol. 161, 186–191 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

Zubia, J.

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quant. 7(5), 836–844 (2001).
[Crossref]

Anal. Chem. (1)

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Bioresour. Technol. (1)

Q. Liao, L. Li, R. Chen, and X. Zhu, “A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation,” Bioresour. Technol. 161, 186–191 (2014).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

L. Beverina, M. Crippa, M. Sassi, A. Monguzzi, F. Meinardi, R. Tubino, and G. A. Pagani, “Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter,” Chem. Commun. (Camb.) 34(34), 5103–5105 (2009).
[Crossref] [PubMed]

Eur. Polym. J. (1)

S. O. Han and L. T. Drzal, “Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin,” Eur. Polym. J. 39(9), 1791–1799 (2003).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quant. 7(5), 836–844 (2001).
[Crossref]

J. Appl. Polym. Sci. (2)

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42(10), 2811–2817 (1991).
[Crossref]

J. He, Z. M. Liu, X. C. Ai, G. Y. Yang, B. X. Han, and J. Xu, “Stability of high-bandwidth graded-index polymer optical fiber,” J. Appl. Polym. Sci. 91(4), 2330–2334 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Chem. A Mater. Energy Sustain. (1)

A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, and H. Y. Kim, “Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process,” J. Mater. Chem. A Mater. Energy Sustain. 1(36), 11001–11010 (2013).
[Crossref]

J. Mater. Res. (1)

J. B. Puthoff, J. E. Jakes, H. Cao, and D. S. Stone, “Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep,” J. Mater. Res. 24(03), 1279–1290 (2009).
[Crossref]

J. Polym. Sci. Pol. Phys. (1)

M. Ree, T. L. Nunes, and K. J. R. Chen, “Structure and properties of a photosensitive polyimide: Effect of photosensitive group,” J. Polym. Sci. Pol. Phys. 33(3), 453–465 (1995).
[Crossref]

Macromolecules (1)

Y. Tamai, H. Tanaka, and K. Nakanishi, “Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics,” Macromolecules 29(21), 6761–6769 (1996).
[Crossref]

NPG Asia Mater. (1)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Opt. Commun. (1)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Opt. Express (9)

C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

H. E. Arabi, S. An, and K. Oh, “Fiber optic engine for micro projection display,” Opt. Express 18(5), 4655–4663 (2010).
[Crossref] [PubMed]

M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, and B. Roth, “Flexible, fast, and low-cost production process for polymer based diffractive optics,” Opt. Express 23(3), 3614–3622 (2015).
[Crossref] [PubMed]

K. Makino, T. Kado, A. Inoue, and Y. Koike, “Low loss graded index polymer optical fiber with high stability under damp heat conditions,” Opt. Express 20(12), 12893–12898 (2012).
[Crossref] [PubMed]

H. C. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, “Quantum dot and silica nanoparticle doped polymer optical fibers,” Opt. Express 15(16), 9989–9994 (2007).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

I. L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

P. Stajanca, O. Cetinkaya, M. Schukar, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

E. G. Strekalova, M. G. Mazza, H. E. Stanley, and G. Franzese, “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement,” Phys. Rev. Lett. 106(14), 145701 (2011).
[Crossref] [PubMed]

Sci. China, Ser. Biol. Chem. (1)

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China, Ser. Biol. Chem. 41, 239–246 (1998).

Sci. Rep. (2)

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5, 11508 (2015).
[Crossref] [PubMed]

C. Sheng, H. Liu, S. Zhu, and D. A. Genov, “Active control of electromagnetic radiation through an enhanced thermo-optic effect,” Sci. Rep. 5, 8835 (2015).
[Crossref] [PubMed]

Science (1)

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281(5379), 962–967 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a–d) Weight, length, diameter, and width changes in D-shaped fibers as a function of heat treatment time at temperature 110 °C; the inset of Figs. 1(a)–1(d) shows that weight, length, diameter, and width of the D-shaped fibers changes with increasing temperature in the range of 20–110 °C (heating rate of the water and vacuum is 2 °C/min).
Fig. 2
Fig. 2 (a) XPS spectra of PMMA subjected water and vacuum heat treatment, (b) FT-IR spectra of PMMA subjected water and vacuum heat treatment, (c) RI change as a function of time at temperature 110 °C, the inset shows that RI changes with increasing temperature in the range of 20–110 °C (heating rate of the water and vacuum is 2 °C/min), (d) the picture and optical micrographs of the D-shaped region (d_1 represents the picture of the D-shaped region, d_2 is the optical micrograph (4 X) of the boundary between the normal region (NR) and polished region (PR), and d_2 is the optical micrograph (4 X) of the D-shaped surface), and (e) scanning electron microscopy (SEM) images (3.00 KX) of the D-shaped surface.
Fig. 3
Fig. 3 (a) spectral transmission of the fibers subjected to water and vacuum heat treatments (the spectral scanning time of Samples A, E, F and G was 1 ms, the scanning time of Sample B was 2 ms, and the scanning time of Samples C–D was 30 ms), (b) transmitted light intensity of the fibers change as a function of time at temperature 110 °C, the inset shows that transmitted light intensity of the fibers changes with increasing temperature in the range of 20–110 °C.
Fig. 4
Fig. 4 (a–g) RCTLI_i,, (i = I, II, III, …, VII), as a function of glucose concentration; where, in Figs. 4(a)–4(g), the sensors were, respectively, from the Samples A–G, (h–i) absorption spectra and RCTLI_VIII of the prepared D-shaped POF sensors in Chlorella pyrenoidosa solution (D-shaped POF sensors were, respectively, normal POF sensor and subjected to heat treatment in water and vacuum at 110 °C for 3 h; particularly, the Chlorella pyrenoidosa concentration was 1.3 g/l), and (j) is the micrograph (200 X) of Chlorella pyrenoidosa.

Tables (1)

Tables Icon

Table 1 Simulation Parameters and Results

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

V= 2πr λ n 2 2 n 1 2
ΔV= πrn λ n 2 2 n 2 Δn
D p = λ 2π [ n 2 2 sin 2 θ i n 2 ] 1/2
Δ D p = λn 2π ( n 2 2 sin 2 θ i n 2 ) 3/2 ×Δn
I ew = I in I out I SR
N= 2L l = L 4rtan θ i
L ew = Lλ 4πrtan θ i [ n 2 2 sin 2 θ i n 2 ] 1/2 tan[ arcsin( n n 2 sin θ i ) ]
Δ L ew = Lλ(XY) 4π n 2 rsin θ i [ n 2 2 sin 2 θ i n 2 ] tan 2 [ arcsin( n n 2 sin θ i ) ] ×Δn
X=ntan[ arc( n n 2 sin θ i ) ] [ n 2 2 sin 2 θ i n 2 ] 1/2
Y= nsin θ i [ n 2 2 sin 2 θ i n 2 ] 1/2 sec 2 [ arcsin( n n 2 sin θ i ) ] [ n 2 2 (nsin θ i ) 2 ] 1/2

Metrics