Abstract

We demonstrate femtosecond filamentation induced convection in water by using a microscope directly observing the dynamic processes of the generated bubbles on a macroscopic time scale. The bubbles are driven by the filament in water and do directional movements. The angles between the bubbles’ moving directions and the laser propagation direction varied at different positions along the filament, exhibiting a fusiform distribution. It indicates a fluid dynamic phenomenon depending on the local filament intensity, and reveals the convection processes induced by filamentation in water indirectly.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser filamentation induced air-flow motion in a diffusion cloud chamber

Haiyi Sun, Jiansheng Liu, Cheng Wang, Jingjing Ju, Zhanxin Wang, Wentao Wang, Xiaochun Ge, Chuang Li, See Leang Chin, Ruxin Li, and Zhizhan Xu
Opt. Express 21(8) 9255-9266 (2013)

Femtosecond laser filament-assisted AgI-type pyrotechnic nucleant-induced water condensation in cloud chamber

Haiyi Sun, Yonghong Liu, Jiansheng Liu, Zhengjun Su, Jingjing Ju, Xingkai Hu, Cheng Wang, Tiejun Wang, See Leang Chin, Ruxin Li, and Zhizhan Xu
Opt. Express 26(23) 29687-29699 (2018)

Multispectral sparkling of microbubbles with a focused femtosecond laser

C. H. Raymond Ooi and A. I. Sanny
J. Opt. Soc. Am. B 34(10) 2072-2080 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
    [Crossref]
  2. D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
    [Crossref]
  3. D. Kiselev, L. Wöste, and J.-P. Wolf, “Filament-induced laser machining (FILM),” Appl. Phys. B 100(3), 515–520 (2010).
    [Crossref]
  4. H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
    [Crossref] [PubMed]
  5. L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
    [Crossref] [PubMed]
  6. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
    [Crossref] [PubMed]
  7. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
    [Crossref]
  8. M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
    [Crossref]
  9. Y. H. Liu, H. Y. Sun, J. J. Ju, Y. Tian, Y. F. Bai, C. Wang, T. J. Wang, J. S. Liu, S. L. Chin, and R. X. Li, “Vortices formation induced by femtosecond laser filamentation in a cloud chamber filled with air and helium,” Chin. Opt. Lett. 14(3), 031401 (2016).
    [Crossref]
  10. J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37(7), 1214–1216 (2012).
    [Crossref] [PubMed]
  11. J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
    [Crossref] [PubMed]
  12. Y. Liu, H. Sun, J. Liu, H. Liang, J. Ju, T. Wang, Y. Tian, C. Wang, Y. Liu, S. L. Chin, and R. Li, “Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases,” Opt. Express 24(7), 7364–7373 (2016).
    [Crossref] [PubMed]
  13. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
    [Crossref]
  14. A. Dubietis, G. Tamošauskas, I. Diomin, and A. Varanavičius, “Self-guided propagation of femtosecond light pulses in water,” Opt. Lett. 28(14), 1269–1271 (2003).
    [Crossref] [PubMed]
  15. K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
    [Crossref]
  16. C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
    [Crossref]
  17. C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
    [Crossref]
  18. O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
    [Crossref] [PubMed]
  19. S. L. Chin and S. Lagacé, “Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization,” Appl. Opt. 35(6), 907–911 (1996).
    [Crossref] [PubMed]
  20. Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
    [Crossref]
  21. A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3–4), 193–198 (1996).
    [Crossref]

2016 (3)

2015 (1)

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

2014 (1)

S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
[Crossref]

2012 (1)

2011 (3)

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

2010 (1)

D. Kiselev, L. Wöste, and J.-P. Wolf, “Filament-induced laser machining (FILM),” Appl. Phys. B 100(3), 515–520 (2010).
[Crossref]

2009 (1)

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

2007 (1)

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

2003 (3)

A. Dubietis, G. Tamošauskas, I. Diomin, and A. Varanavičius, “Self-guided propagation of femtosecond light pulses in water,” Opt. Lett. 28(14), 1269–1271 (2003).
[Crossref] [PubMed]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

2001 (2)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

1998 (2)

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

1996 (2)

Baghdassarian, O.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Bai, Y. F.

Becker, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Bergé, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Binhammer, T.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

Bock, S.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Brodeur, A.

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3–4), 193–198 (1996).
[Crossref]

Chen, Y.

J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
[Crossref] [PubMed]

Cheng, Y.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Chin, S. L.

Y. H. Liu, H. Y. Sun, J. J. Ju, Y. Tian, Y. F. Bai, C. Wang, T. J. Wang, J. S. Liu, S. L. Chin, and R. X. Li, “Vortices formation induced by femtosecond laser filamentation in a cloud chamber filled with air and helium,” Chin. Opt. Lett. 14(3), 031401 (2016).
[Crossref]

Y. Liu, H. Sun, J. Liu, H. Liang, J. Ju, T. Wang, Y. Tian, C. Wang, Y. Liu, S. L. Chin, and R. Li, “Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases,” Opt. Express 24(7), 7364–7373 (2016).
[Crossref] [PubMed]

J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
[Crossref] [PubMed]

S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
[Crossref]

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37(7), 1214–1216 (2012).
[Crossref] [PubMed]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3–4), 193–198 (1996).
[Crossref]

S. L. Chin and S. Lagacé, “Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization,” Appl. Opt. 35(6), 907–911 (1996).
[Crossref] [PubMed]

Chu, H. C.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Cook, K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

Couairon, A.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Ding, L.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Diomin, I.

Dubietis, A.

Franco, M.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Fu, Y. X.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Gaarde, M. B.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

Ge, X.

Golubtsov, I. S.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Henin, S.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Ilkov, F. A.

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3–4), 193–198 (1996).
[Crossref]

Iwasaki, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Ju, J.

Ju, J. J.

Kandidov, V. P.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Kar, A. K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

Kasparian, J.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Kiselev, D.

D. Kiselev, L. Wöste, and J.-P. Wolf, “Filament-induced laser machining (FILM),” Appl. Phys. B 100(3), 515–520 (2010).
[Crossref]

Kosareva, O.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Kovacev, M.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

Kraft, S.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Lagacé, S.

Lamb, R. A.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

Lauterborn, W.

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

Li, C.

Li, R.

Li, R. X.

Li, W.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Liang, H.

J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
[Crossref] [PubMed]

Y. Liu, H. Sun, J. Liu, H. Liang, J. Ju, T. Wang, Y. Tian, C. Wang, Y. Liu, S. L. Chin, and R. Li, “Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases,” Opt. Express 24(7), 7364–7373 (2016).
[Crossref] [PubMed]

Lindau, O.

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

Liu, J.

Liu, J. S.

Liu, W.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Liu, Y.

Liu, Y. H.

Lu, P. F.

S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
[Crossref]

Lu, X.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Malta, J. B.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Mizushima, Y.

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

Morgner, U.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

Mysyrowicz, A.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Ohl, C. D.

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

Petrarca, M.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Prade, B.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Saito, T.

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

Sauerbrey, R.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Schramm, U.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Schulz, E.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

Shi, L.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Soong, H. K.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Steingrube, D. S.

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

Stelmaszczyk, K.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Sudrie, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Sun, H.

Sun, H. Y.

Tabbert, B.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Tamošauskas, G.

Tian, Y.

Tzortzakis, S.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Vaneph, C.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Varanavicius, A.

Vogel, A.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Wang, C.

Wang, J.

J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
[Crossref] [PubMed]

Wang, T.

J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
[Crossref] [PubMed]

Y. Liu, H. Sun, J. Liu, H. Liang, J. Ju, T. Wang, Y. Tian, C. Wang, Y. Liu, S. L. Chin, and R. Li, “Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases,” Opt. Express 24(7), 7364–7373 (2016).
[Crossref] [PubMed]

Wang, T. J.

Y. H. Liu, H. Y. Sun, J. J. Ju, Y. Tian, Y. F. Bai, C. Wang, T. J. Wang, J. S. Liu, S. L. Chin, and R. X. Li, “Vortices formation induced by femtosecond laser filamentation in a cloud chamber filled with air and helium,” Chin. Opt. Lett. 14(3), 031401 (2016).
[Crossref]

S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
[Crossref]

Wang, W.

Wang, Y.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Weber, K.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Williams, G. A.

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Wolf, J.-P.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

D. Kiselev, L. Wöste, and J.-P. Wolf, “Filament-induced laser machining (FILM),” Appl. Phys. B 100(3), 515–520 (2010).
[Crossref]

Wöste, L.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

D. Kiselev, L. Wöste, and J.-P. Wolf, “Filament-induced laser machining (FILM),” Appl. Phys. B 100(3), 515–520 (2010).
[Crossref]

Xu, Z.

J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
[Crossref] [PubMed]

J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, “Laser-filamentation-induced condensation and snow formation in a cloud chamber,” Opt. Lett. 37(7), 1214–1216 (2012).
[Crossref] [PubMed]

Xu, Z. Z.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Yuan, S.

S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
[Crossref]

Zeng, H.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Zeng, H. P.

S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
[Crossref]

Zhou, Z. H.

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

Am. J. Ophthalmol. (1)

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

D. Kiselev, L. Wöste, and J.-P. Wolf, “Filament-induced laser machining (FILM),” Appl. Phys. B 100(3), 515–520 (2010).
[Crossref]

Appl. Phys. Lett. (5)

S. Yuan, T. J. Wang, P. F. Lu, S. L. Chin, and H. P. Zeng, “Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy,” Appl. Phys. Lett. 104(9), 091113 (2014).
[Crossref]

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2003).
[Crossref]

C. Wang, Y. X. Fu, Z. H. Zhou, Y. Cheng, and Z. Z. Xu, “Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water,” Appl. Phys. Lett. 90(18), 181119 (2007).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, and J.-P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99(14), 141103 (2011).
[Crossref]

Y. Mizushima and T. Saito, “Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale,” Appl. Phys. Lett. 107(11), 114102 (2015).
[Crossref]

Chin. Opt. Lett. (1)

New J. Phys. (1)

D. S. Steingrube, E. Schulz, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, and M. Kovačev, “High-order harmonic generation directly from a filament,” New J. Phys. 13(4), 043022 (2011).
[Crossref]

Opt. Commun. (1)

A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129(3–4), 193–198 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (5)

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

C. D. Ohl, O. Lindau, and W. Lauterborn, “Luminescence from spherically and aspherically collapsing laser induced bubbles,” Phys. Rev. Lett. 80(2), 393–396 (1998).
[Crossref]

O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, “Spectrum of luminescence from laser-created bubbles in water,” Phys. Rev. Lett. 86(21), 4934–4937 (2001).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Ju, J. Liu, H. Liang, Y. Chen, H. Sun, Y. Liu, J. Wang, C. Wang, T. Wang, R. Li, Z. Xu, and S. L. Chin, “Femtosecond laser filament induced condensation and precipitation in a cloud chamber,” Sci. Rep. 6, 25417 (2016).
[Crossref] [PubMed]

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (3946 KB)      Top view video corresponding to the case of 90°
» Visualization 2: MP4 (4583 KB)      Top view video corresponding to the case of 90°
» Visualization 3: MP4 (1279 KB)      Top view video corresponding to the case of 90°
» Visualization 4: MP4 (4126 KB)      Side view video of the bubbles’ motion

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for observing the movements of the bubbles generated by femtosecond filamentation in water.
Fig. 2
Fig. 2 Top view of the filament-induced bubbles generation in water. The input pulse energy was 3.0 mJ, without (a) and with (b) a band pass filter of 800 nm under the micro objective.
Fig. 3
Fig. 3 The top view videos corresponding to the cases of (a) θ < 90 ° , at the position of 16 mm (see Visualization 1); (b) θ 90 ° , at the position of 1 mm (see Visualization 2); (c) θ > 90 ° , at the position of −14 mm (see Visualization 3). (d) The side view video of the bubbles’ motion, at the position of −5 mm (see Visualization 4). The input pulse energy was set as 3.0 mJ. The geometric position of laser filamentation and the moving direction of bubbles are indicated.
Fig. 4
Fig. 4 (a) The bubbles move from the cramped side to the largo side. (b) Profile schematic of the convection process in water. The red dot refers to the profile of the laser beam, and the white dashed curves are guidelines for the water flowing.
Fig. 5
Fig. 5 (a) Bubbles number at different positions along the filament, with the input pulse energy of 0.5 mJ (black squares), 1.7 mJ (red circles), and 3.0 mJ (olive triangles). The number of bubbles were averaged over 5 random laser shots. (b) Bubbles moving directions at different positions along the filament, with the input pulse energy of 0.5 mJ (black squares), 1.7 mJ (red circles), and 3.0 mJ (green triangles). The red arrows represent the laser propagation direction.

Metrics