I. S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 2, 221–224 (2015).

[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).

[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39(10), 2920–2923 (2014).

[Crossref]
[PubMed]

F. Ferdous, A. A. Demchenko, S. P. Vyatchanin, A. B. Matsko, and L. Maleki, “Microcavity morphology optimization,” Phys. Rev. A 90, 033826 (2014).

[Crossref]

I. S. Grudinin and N. Yu, “Finite-element modeling of coupled optical microdisk resonators for displacement sensing,” J. Opt. Soc. Am. B 29, 221–224 (2012).

[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).

[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).

[Crossref]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313–1315 (2006).

[Crossref]
[PubMed]

F. L. Teixeira and W. C. Chew, “Systematic derivation of aniosotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guided Wave Lett. 7, 371–373 (1997).

[Crossref]

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10, 391–398 (1939).

[Crossref]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).

[Crossref]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

F. L. Teixeira and W. C. Chew, “Systematic derivation of aniosotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guided Wave Lett. 7, 371–373 (1997).

[Crossref]

F. Ferdous, A. A. Demchenko, S. P. Vyatchanin, A. B. Matsko, and L. Maleki, “Microcavity morphology optimization,” Phys. Rev. A 90, 033826 (2014).

[Crossref]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).

[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

F. Ferdous, A. A. Demchenko, S. P. Vyatchanin, A. B. Matsko, and L. Maleki, “Microcavity morphology optimization,” Phys. Rev. A 90, 033826 (2014).

[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).

[Crossref]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

I. S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 2, 221–224 (2015).

[Crossref]

I. S. Grudinin and N. Yu, “Finite-element modeling of coupled optical microdisk resonators for displacement sensing,” J. Opt. Soc. Am. B 29, 221–224 (2012).

[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).

[Crossref]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313–1315 (2006).

[Crossref]
[PubMed]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39(10), 2920–2923 (2014).

[Crossref]
[PubMed]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).

[Crossref]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313–1315 (2006).

[Crossref]
[PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).

[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).

[Crossref]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).

[Crossref]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

F. Ferdous, A. A. Demchenko, S. P. Vyatchanin, A. B. Matsko, and L. Maleki, “Microcavity morphology optimization,” Phys. Rev. A 90, 033826 (2014).

[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39(10), 2920–2923 (2014).

[Crossref]
[PubMed]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).

[Crossref]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313–1315 (2006).

[Crossref]
[PubMed]

F. Ferdous, A. A. Demchenko, S. P. Vyatchanin, A. B. Matsko, and L. Maleki, “Microcavity morphology optimization,” Phys. Rev. A 90, 033826 (2014).

[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39(10), 2920–2923 (2014).

[Crossref]
[PubMed]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313–1315 (2006).

[Crossref]
[PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).

[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).

[Crossref]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10, 391–398 (1939).

[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39(10), 2920–2923 (2014).

[Crossref]
[PubMed]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313–1315 (2006).

[Crossref]
[PubMed]

F. L. Teixeira and W. C. Chew, “Systematic derivation of aniosotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guided Wave Lett. 7, 371–373 (1997).

[Crossref]

F. Ferdous, A. A. Demchenko, S. P. Vyatchanin, A. B. Matsko, and L. Maleki, “Microcavity morphology optimization,” Phys. Rev. A 90, 033826 (2014).

[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).

[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).

[Crossref]

F. L. Teixeira and W. C. Chew, “Systematic derivation of aniosotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guided Wave Lett. 7, 371–373 (1997).

[Crossref]

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).

[Crossref]

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10, 391–398 (1939).

[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Ho Daniel Lee, M. Yu, C. T. Phare, C. B. Poitras, Al. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).

[Crossref]
[PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiments,” Opt. Express 13, 1515–1530 (2005).

[Crossref]
[PubMed]

J. E. Heebner, T. C. Bond, and J. S. Kalman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15, 4452 (2007).

[Crossref]
[PubMed]

M. I. Cheema and A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21, 8724–8735 (2013).

[Crossref]
[PubMed]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39(10), 2920–2923 (2014).

[Crossref]
[PubMed]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313–1315 (2006).

[Crossref]
[PubMed]

B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390 (1996).

[Crossref]
[PubMed]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1, 137–144 (2014).

[Crossref]

I. S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 2, 221–224 (2015).

[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).

[Crossref]

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators,” Phys. Rev. A 88, 033816 (2013).

[Crossref]

F. Ferdous, A. A. Demchenko, S. P. Vyatchanin, A. B. Matsko, and L. Maleki, “Microcavity morphology optimization,” Phys. Rev. A 90, 033826 (2014).

[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).

[Crossref]

O. Pironneau, F. Hecht, A. Le Hyaric, and J. Morice, “FreeFem++,” http://www.freefem.org/

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” arXiv:1410.8598.