Abstract

A liquid crystal on silicon (LCoS) based polarization modulated image (PMI) system architecture using red-, green- and blue-based light-emitting diodes (LEDs), which offers simultaneous micro-projection and high-speed data transmission at nearly a gigabit, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G, is proposed and experimentally demonstrated. In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture. The results demonstrated that an aggregative data transmission rate of 892 Mb/s and 900 Mb/s at a BER of 10^(−3) can be achieved by using 16-QAM baseband modulation scheme when data transmission were performed with and without micro-projection simultaneously.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization

Yiguang Wang, Xingxing Huang, Li Tao, Jianyang Shi, and Nan Chi
Opt. Express 23(10) 13626-13633 (2015)

Adaptive 84.44−190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance

C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu
Opt. Express 22(8) 9783-9788 (2014)

Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception

Jiehui Li, Fumin Wang, Mingming Zhao, Fengyi Jiang, and Nan Chi
Appl. Opt. 58(2) 383-388 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Corcoran, “The internet of things: Why now, and what’s next?” IEEE Consum. Electron. Mag. 5(1), 63–68 (2016).
    [Crossref]
  2. Samsung Electronics, Samsung GALAXY beam, http://www.samsung.com/global/microsite/galaxybeam/
  3. “5G: What is It?” Ericsson white paper, available at http://www.ericsson.com/res/docs/2014/5g-what-is-it.pdf
  4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  5. D. C. O’Brien, L. Zeng, and H. Le, Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE 2008), 1–5.
  6. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
    [Crossref]
  7. F. Xiong, Digital Modulation Techniques (Artech House, 2000).
  8. J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewskiet, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThH3.
  9. H. Li, X. Chen, J. Guo, and H. Chen, “A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application,” Opt. Express 22(22), 27203–27213 (2014).
    [Crossref] [PubMed]
  10. Philips Ltd, Philips Ltd. 2012. Luxeon Z: Color and white LED portfolio. Amsterdam, Netherlands: Philips Ltd.
  11. X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
    [Crossref]
  12. M.-S. Chen, N. Collings, H.-C. Lin, and Y.-H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
    [Crossref]
  13. Jasper Display Corp, Product and application. Accessed from http://www.jasperdisplay.com/ .
  14. PDA-10A Si Amplified Fixed Detector User Guide, Thorlabs Inc. Newton, NJ, (2014).
  15. G. P. Agrawal, Lightwave Technology Telecommunication System (John Wiley & Sons, Inc. 2005).
  16. R. A. Shafik, M. S. Rahman, A. R. Islam, and N. S. Ashraf, “On the error vector magnitude as a performance metric and comparative analysis,” in Proceedings of IEEE International Conference on Emerging Technologies(IEEE 2006), 27–31.
    [Crossref]

2016 (1)

P. Corcoran, “The internet of things: Why now, and what’s next?” IEEE Consum. Electron. Mag. 5(1), 63–68 (2016).
[Crossref]

2014 (2)

M.-S. Chen, N. Collings, H.-C. Lin, and Y.-H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. Li, X. Chen, J. Guo, and H. Chen, “A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application,” Opt. Express 22(22), 27203–27213 (2014).
[Crossref] [PubMed]

2013 (1)

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

2007 (1)

X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Chen, H.

Chen, M.-S.

M.-S. Chen, N. Collings, H.-C. Lin, and Y.-H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Chen, X.

Collings, N.

M.-S. Chen, N. Collings, H.-C. Lin, and Y.-H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Corcoran, P.

P. Corcoran, “The internet of things: Why now, and what’s next?” IEEE Consum. Electron. Mag. 5(1), 63–68 (2016).
[Crossref]

Guo, J.

Ho, Y. L.

X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[Crossref]

Huang, H.-C.

X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[Crossref]

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kwok, H.-S.

X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[Crossref]

Li, H.

Li, J.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Lin, H.-C.

M.-S. Chen, N. Collings, H.-C. Lin, and Y.-H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Lin, Y.-H.

M.-S. Chen, N. Collings, H.-C. Lin, and Y.-H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Tan, L.

X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[Crossref]

Yu, X.-J.

X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[Crossref]

IEEE Commun. Mag. (1)

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

IEEE Consum. Electron. Mag. (1)

P. Corcoran, “The internet of things: Why now, and what’s next?” IEEE Consum. Electron. Mag. 5(1), 63–68 (2016).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

J. Disp. Technol. (2)

X.-J. Yu, Y. L. Ho, L. Tan, H.-C. Huang, and H.-S. Kwok, “LED-based projection systems,” J. Disp. Technol. 3(3), 295–303 (2007).
[Crossref]

M.-S. Chen, N. Collings, H.-C. Lin, and Y.-H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Opt. Express (1)

Other (10)

Philips Ltd, Philips Ltd. 2012. Luxeon Z: Color and white LED portfolio. Amsterdam, Netherlands: Philips Ltd.

F. Xiong, Digital Modulation Techniques (Artech House, 2000).

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Büttner, K.-D. Langer, and J. W. Walewskiet, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThH3.

D. C. O’Brien, L. Zeng, and H. Le, Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE 2008), 1–5.

Samsung Electronics, Samsung GALAXY beam, http://www.samsung.com/global/microsite/galaxybeam/

“5G: What is It?” Ericsson white paper, available at http://www.ericsson.com/res/docs/2014/5g-what-is-it.pdf

Jasper Display Corp, Product and application. Accessed from http://www.jasperdisplay.com/ .

PDA-10A Si Amplified Fixed Detector User Guide, Thorlabs Inc. Newton, NJ, (2014).

G. P. Agrawal, Lightwave Technology Telecommunication System (John Wiley & Sons, Inc. 2005).

R. A. Shafik, M. S. Rahman, A. R. Islam, and N. S. Ashraf, “On the error vector magnitude as a performance metric and comparative analysis,” in Proceedings of IEEE International Conference on Emerging Technologies(IEEE 2006), 27–31.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental implementation of micro-projection enabled SRC system.
Fig. 2
Fig. 2 The highest data rate of Red LED (BER = 10−3).
Fig. 3
Fig. 3 The highest data rate of Green LED (BER = 10−3).
Fig. 4
Fig. 4 The highest data rate of Blue LED (BER = 10−3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

BE R MPAM M1 M 2 log 2 M Q{ SNR M1 },
BE R MPSK = 2 n Q( 2SNR sin π M )
SNR= 1 EV M 2
BE R MQAM M 1 M 4 log 2 M Q{ 3 M1 SNR }

Metrics