Abstract

Here we report a simple way to enhance the resolution of a confocal scanning microscope under cryogenic conditions. Using a microscope objective (MO) with high numerical aperture (NA = 1.25) and 1-propanol as an immersion fluid with low freezing temperature we were able to reach an imaging resolution at 160 K comparable to ambient conditions. The MO and the sample were both placed inside the inner chamber of the cryostat to reduce distortions induced by temperature gradients. The image quality of our commercially available MO was further enhanced by scanning the sample (sample scanning) in contrast to beam scanning. The ease of the whole procedure marks an essential step towards the development of cryo high-resolution microscopy and correlative light and electron cryo microscopy (cryoCLEM).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resolution enhancement in laser scanning microscopy with deconvolution switching laser modes (D-SLAM)

Louis Thibon, Michel Piché, and Yves De Koninck
Opt. Express 26(19) 24881-24903 (2018)

Resolution enhancement in quantitative phase microscopy

Vicente Micó, Juanjuan Zheng, Javier Garcia, Zeev Zalevsky, and Peng Gao
Adv. Opt. Photon. 11(1) 135-214 (2019)

Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging

Harold Dehez, Michel Piché, and Yves De Koninck
Opt. Express 21(13) 15912-15925 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
    [Crossref]
  2. G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
    [Crossref]
  3. A. Drechsler, M. A. Lieb, C. Debus, A. J. Meixner, and G. Tarrach, “Confocal microscopy with a high numerical aperture parabolic mirror,” Opt. Express 9(12), 637–644 (2001).
    [Crossref] [PubMed]
  4. E. Abbe, “Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
    [Crossref]
  5. M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
    [Crossref] [PubMed]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  7. M. Friedenberger, M. Bode, A. Krusche, and W. Schubert, “Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures,” Nat. Protoc. 2(9), 2285–2294 (2007).
    [Crossref] [PubMed]
  8. S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
    [Crossref] [PubMed]
  9. S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
    [Crossref] [PubMed]
  10. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  11. M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and raman near-field optical microscopy,” Chem. Phys. Chem. 9(2), 316–320 (2008).
    [PubMed]
  12. C. Stanciu, M. Sackrow, and A. J. Meixner, “High NA particle- and tip-enhanced nanoscale raman spectroscopy with a parabolic-mirror microscope,” J. Microsc. 229(2), 247–253 (2008).
    [Crossref] [PubMed]
  13. R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, “Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels,” J. Phys. Chem. A 108(10), 1657–1665 (2004).
    [Crossref]
  14. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
    [Crossref] [PubMed]
  15. R. Kaufmann, C. Hagen, and K. Grunewald, “Fluorescence cryo-microscopy: current challenges and prospects,” Curr. Opin. Chem. Biol. 20, 86–91 (2014).
    [Crossref] [PubMed]
  16. M. Hussels, A. Konrad, and M. Brecht, “Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures,” Rev. Sci. Instrum. 83(12), 123706 (2012).
    [Crossref]
  17. R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
    [Crossref] [PubMed]
  18. S. Weisenburger, B. Jing, A. Renn, and V. Sandoghdar, “Cryogenic localization of single molecules with angstrom precision,” Proc. SPIE 8815, 88150D (2013).
    [Crossref]
  19. S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
    [PubMed]
  20. Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
    [Crossref] [PubMed]
  21. M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73(5), 635–637 (1999).
    [Crossref]
  22. M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
    [Crossref]
  23. W. X. Li, S. C. Stein, I. Gregor, and J. Enderlein, “Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy,” Opt. Express 23(3), 3770–3783 (2015).
    [Crossref] [PubMed]
  24. C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
    [Crossref] [PubMed]
  25. A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
    [Crossref] [PubMed]
  26. L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
    [Crossref] [PubMed]
  27. A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
    [Crossref] [PubMed]
  28. M. Schorb and J. A. G. Briggs, “Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity,” Ultramicroscopy 143, 24–32 (2014).
    [Crossref]
  29. P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, “Near-field and confocal surface-enhanced resonance raman spectroscopy at cryogenic temperatures,” J. Microsc. 209, 162–166 (2003).
    [Crossref] [PubMed]
  30. M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
    [Crossref] [PubMed]
  31. E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
    [Crossref]
  32. T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
    [Crossref] [PubMed]
  33. W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
    [Crossref]
  34. M. Hussels and M. Brecht, “Vorrichtung und Verfahren zum Transferieren eines Probenhalters von einer Transportvorrichtung zu einer Scanvorrichtung,” PatentDE102012218377 B3, April17(2014).
  35. K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
    [Crossref]
  36. V. Hirschfeld and C. G. Hubner, “A sensitive and versatile laser scanning confocal optical microscope for single-molecule fluorescence at 77 K,” Rev. Sci. Instrum. 81(11), p. 113705, Nov.2010.
    [Crossref] [PubMed]
  37. F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81(9), 093705 (2010).
    [Crossref] [PubMed]
  38. A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).
  39. J. Dubochet, “The physics of rapid cooling and its implications for cryoimmobilization of cells,” Methods Cell Biol. 79(79), 7–21 (2007).
    [Crossref] [PubMed]
  40. C. van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5(11), 973–980 (2008).
    [Crossref] [PubMed]

2015 (1)

2014 (7)

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

M. Schorb and J. A. G. Briggs, “Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity,” Ultramicroscopy 143, 24–32 (2014).
[Crossref]

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

R. Kaufmann, C. Hagen, and K. Grunewald, “Fluorescence cryo-microscopy: current challenges and prospects,” Curr. Opin. Chem. Biol. 20, 86–91 (2014).
[Crossref] [PubMed]

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

2013 (2)

S. Weisenburger, B. Jing, A. Renn, and V. Sandoghdar, “Cryogenic localization of single molecules with angstrom precision,” Proc. SPIE 8815, 88150D (2013).
[Crossref]

A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).

2012 (2)

M. Hussels, A. Konrad, and M. Brecht, “Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures,” Rev. Sci. Instrum. 83(12), 123706 (2012).
[Crossref]

A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
[Crossref] [PubMed]

2011 (1)

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

2010 (3)

V. Hirschfeld and C. G. Hubner, “A sensitive and versatile laser scanning confocal optical microscope for single-molecule fluorescence at 77 K,” Rev. Sci. Instrum. 81(11), p. 113705, Nov.2010.
[Crossref] [PubMed]

F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81(9), 093705 (2010).
[Crossref] [PubMed]

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

2009 (2)

L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
[Crossref] [PubMed]

M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
[Crossref] [PubMed]

2008 (4)

C. van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5(11), 973–980 (2008).
[Crossref] [PubMed]

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and raman near-field optical microscopy,” Chem. Phys. Chem. 9(2), 316–320 (2008).
[PubMed]

C. Stanciu, M. Sackrow, and A. J. Meixner, “High NA particle- and tip-enhanced nanoscale raman spectroscopy with a parabolic-mirror microscope,” J. Microsc. 229(2), 247–253 (2008).
[Crossref] [PubMed]

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

2007 (5)

M. Friedenberger, M. Bode, A. Krusche, and W. Schubert, “Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures,” Nat. Protoc. 2(9), 2285–2294 (2007).
[Crossref] [PubMed]

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[Crossref] [PubMed]

C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
[Crossref] [PubMed]

J. Dubochet, “The physics of rapid cooling and its implications for cryoimmobilization of cells,” Methods Cell Biol. 79(79), 7–21 (2007).
[Crossref] [PubMed]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

2004 (2)

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, “Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels,” J. Phys. Chem. A 108(10), 1657–1665 (2004).
[Crossref]

2003 (2)

P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, “Near-field and confocal surface-enhanced resonance raman spectroscopy at cryogenic temperatures,” J. Microsc. 209, 162–166 (2003).
[Crossref] [PubMed]

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

2001 (1)

1999 (3)

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73(5), 635–637 (1999).
[Crossref]

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

1988 (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

1873 (1)

E. Abbe, “Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Akiyama, H.

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73(5), 635–637 (1999).
[Crossref]

Algar, W. R.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Anger, P.

P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, “Near-field and confocal surface-enhanced resonance raman spectroscopy at cryogenic temperatures,” J. Microsc. 209, 162–166 (2003).
[Crossref] [PubMed]

Ataullakhanov, F. I.

C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
[Crossref] [PubMed]

Baba, M.

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73(5), 635–637 (1999).
[Crossref]

Barnes, C. A.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Bates, M.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Bauerlein, F. J. B.

A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
[Crossref] [PubMed]

Becker-Catania, S. G.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Berghaus, T.

P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, “Near-field and confocal surface-enhanced resonance raman spectroscopy at cryogenic temperatures,” J. Microsc. 209, 162–166 (2003).
[Crossref] [PubMed]

Betsis, S. C.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

Betzig, E.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bjornsson, C.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Bode, M.

M. Friedenberger, M. Bode, A. Krusche, and W. Schubert, “Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures,” Nat. Protoc. 2(9), 2285–2294 (2007).
[Crossref] [PubMed]

Boeneman, K.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Brecht, M.

A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).

M. Hussels, A. Konrad, and M. Brecht, “Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures,” Rev. Sci. Instrum. 83(12), 123706 (2012).
[Crossref]

M. Hussels and M. Brecht, “Vorrichtung und Verfahren zum Transferieren eines Probenhalters von einer Transportvorrichtung zu einer Scanvorrichtung,” PatentDE102012218377 B3, April17(2014).

Briegel, A.

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

Briggs, J. A. G.

M. Schorb and J. A. G. Briggs, “Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity,” Ultramicroscopy 143, 24–32 (2014).
[Crossref]

Chawla, M. K.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Chen, S. Y.

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

Chiba, T.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Cinquin, B. P.

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Davis, I.

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Debus, C.

Delehanty, J. B.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Dempsey, G. T.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[Crossref] [PubMed]

Do, M.

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

Dobbie, I. M.

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Drechsler, A.

Dubochet, J.

J. Dubochet, “The physics of rapid cooling and its implications for cryoimmobilization of cells,” Methods Cell Biol. 79(79), 7–21 (2007).
[Crossref] [PubMed]

Dyba, M.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

Elings, V.

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

Enderlein, J.

Engel, B. D.

A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
[Crossref] [PubMed]

Feltz, A.

P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, “Near-field and confocal surface-enhanced resonance raman spectroscopy at cryogenic temperatures,” J. Microsc. 209, 162–166 (2003).
[Crossref] [PubMed]

Friedenberger, M.

M. Friedenberger, M. Bode, A. Krusche, and W. Schubert, “Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures,” Nat. Protoc. 2(9), 2285–2294 (2007).
[Crossref] [PubMed]

Fukumura, H.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Ghislain, L.

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

Giessen, H.

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

Gillette, J. M.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

Grazioso, F.

F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81(9), 093705 (2010).
[Crossref] [PubMed]

Gregor, I.

Grunewald, K.

R. Kaufmann, C. Hagen, and K. Grunewald, “Fluorescence cryo-microscopy: current challenges and prospects,” Curr. Opin. Chem. Biol. 20, 86–91 (2014).
[Crossref] [PubMed]

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Guo, W. Z.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

Guzowski, J. F.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Hagen, C.

R. Kaufmann, C. Hagen, and K. Grunewald, “Fluorescence cryo-microscopy: current challenges and prospects,” Curr. Opin. Chem. Biol. 20, 86–91 (2014).
[Crossref] [PubMed]

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Hanni, D.

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

Hell, S. W.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

Hess, H. F.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hirschfeld, V.

V. Hirschfeld and C. G. Hubner, “A sensitive and versatile laser scanning confocal optical microscope for single-molecule fluorescence at 77 K,” Rev. Sci. Instrum. 81(11), p. 113705, Nov.2010.
[Crossref] [PubMed]

Hloupis, G.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

Huang, B.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[Crossref] [PubMed]

Hubner, C. G.

V. Hirschfeld and C. G. Hubner, “A sensitive and versatile laser scanning confocal optical microscope for single-molecule fluorescence at 77 K,” Rev. Sci. Instrum. 81(11), p. 113705, Nov.2010.
[Crossref] [PubMed]

Hussels, M.

A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).

M. Hussels, A. Konrad, and M. Brecht, “Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures,” Rev. Sci. Instrum. 83(12), 123706 (2012).
[Crossref]

M. Hussels and M. Brecht, “Vorrichtung und Verfahren zum Transferieren eines Probenhalters von einer Transportvorrichtung zu einer Scanvorrichtung,” PatentDE102012218377 B3, April17(2014).

Jain, V.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Jakobs, S.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

Jennings, T. L.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Jensen, G. J.

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

Jing, B.

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

S. Weisenburger, B. Jing, A. Renn, and V. Sandoghdar, “Cryogenic localization of single molecules with angstrom precision,” Proc. SPIE 8815, 88150D (2013).
[Crossref]

Jones, E. Y.

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Katoh, W.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Kaufmann, R.

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

R. Kaufmann, C. Hagen, and K. Grunewald, “Fluorescence cryo-microscopy: current challenges and prospects,” Curr. Opin. Chem. Biol. 20, 86–91 (2014).
[Crossref] [PubMed]

Klumperman, J.

C. van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5(11), 973–980 (2008).
[Crossref] [PubMed]

Knoechel, C. G.

M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
[Crossref] [PubMed]

Kol’chenko, M. A.

R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, “Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels,” J. Phys. Chem. A 108(10), 1657–1665 (2004).
[Crossref]

Koning, R. I.

L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
[Crossref] [PubMed]

Konrad, A.

A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).

M. Hussels, A. Konrad, and M. Brecht, “Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures,” Rev. Sci. Instrum. 83(12), 123706 (2012).
[Crossref]

Koster, A. J.

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
[Crossref] [PubMed]

Krusche, A.

M. Friedenberger, M. Bode, A. Krusche, and W. Schubert, “Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures,” Nat. Protoc. 2(9), 2285–2294 (2007).
[Crossref] [PubMed]

Kulzer, F.

R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, “Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels,” J. Phys. Chem. A 108(10), 1657–1665 (2004).
[Crossref]

Larabell, C. A.

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
[Crossref] [PubMed]

Le Gros, M. A.

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
[Crossref] [PubMed]

Li, W. X.

Lieb, M. A.

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and raman near-field optical microscopy,” Chem. Phys. Chem. 9(2), 316–320 (2008).
[PubMed]

A. Drechsler, M. A. Lieb, C. Debus, A. J. Meixner, and G. Tarrach, “Confocal microscopy with a high numerical aperture parabolic mirror,” Opt. Express 9(12), 637–644 (2001).
[Crossref] [PubMed]

Lin, G.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Manley, S.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

McDermott, G.

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
[Crossref] [PubMed]

Mcintosh, J. R.

C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
[Crossref] [PubMed]

Medintz, I. L.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Meixner, A. J.

A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and raman near-field optical microscopy,” Chem. Phys. Chem. 9(2), 316–320 (2008).
[PubMed]

C. Stanciu, M. Sackrow, and A. J. Meixner, “High NA particle- and tip-enhanced nanoscale raman spectroscopy with a parabolic-mirror microscope,” J. Microsc. 229(2), 247–253 (2008).
[Crossref] [PubMed]

P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, “Near-field and confocal surface-enhanced resonance raman spectroscopy at cryogenic temperatures,” J. Microsc. 209, 162–166 (2003).
[Crossref] [PubMed]

A. Drechsler, M. A. Lieb, C. Debus, A. J. Meixner, and G. Tarrach, “Confocal microscopy with a high numerical aperture parabolic mirror,” Opt. Express 9(12), 637–644 (2001).
[Crossref] [PubMed]

Minagawa, J.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Moerner, W. E.

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

Moutzouris, K.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

Nakanishi, H.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Namie, K.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Nicastro, D.

C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
[Crossref] [PubMed]

Noguchi, T.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Oh, E.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Ohnishi, N.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Olson, K.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Oorschot, V.

C. van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5(11), 973–980 (2008).
[Crossref] [PubMed]

Orrit, M.

R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, “Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels,” J. Phys. Chem. A 108(10), 1657–1665 (2004).
[Crossref]

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

Papamichael, M.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

Patterson, G. H.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Patton, B. R.

F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81(9), 093705 (2010).
[Crossref] [PubMed]

Peng, X. G.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

Plitzko, J. M.

A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
[Crossref] [PubMed]

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

Prasuhn, D. E.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Qu, L. H.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

Renn, A.

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

S. Weisenburger, B. Jing, A. Renn, and V. Sandoghdar, “Cryogenic localization of single molecules with angstrom precision,” Proc. SPIE 8815, 88150D (2013).
[Crossref]

Reymond, L.

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

Rigort, A.

A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
[Crossref] [PubMed]

Roysam, B.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Ruhle, W. W.

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Sackrow, M.

C. Stanciu, M. Sackrow, and A. J. Meixner, “High NA particle- and tip-enhanced nanoscale raman spectroscopy with a parabolic-mirror microscope,” J. Microsc. 229(2), 247–253 (2008).
[Crossref] [PubMed]

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and raman near-field optical microscopy,” Chem. Phys. Chem. 9(2), 316–320 (2008).
[PubMed]

Sandoghdar, V.

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

S. Weisenburger, B. Jing, A. Renn, and V. Sandoghdar, “Cryogenic localization of single molecules with angstrom precision,” Proc. SPIE 8815, 88150D (2013).
[Crossref]

Sapsford, K. E.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Sarbash, V. I.

C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
[Crossref] [PubMed]

Sasaki, T.

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73(5), 635–637 (1999).
[Crossref]

Schellenberger, P.

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Schorb, M.

M. Schorb and J. A. G. Briggs, “Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity,” Ultramicroscopy 143, 24–32 (2014).
[Crossref]

Schubert, W.

M. Friedenberger, M. Bode, A. Krusche, and W. Schubert, “Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures,” Nat. Protoc. 2(9), 2285–2294 (2007).
[Crossref] [PubMed]

Schuler, B.

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

Schwartz, C. L.

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
[Crossref] [PubMed]

Scott, B.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Seiradake, E.

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Shain, W.

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Shibata, Y.

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Shroff, H.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

Smith, E. A.

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

Smith, J. M.

F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81(9), 093705 (2010).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Spindel, S.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Stanciu, C.

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and raman near-field optical microscopy,” Chem. Phys. Chem. 9(2), 316–320 (2008).
[PubMed]

C. Stanciu, M. Sackrow, and A. J. Meixner, “High NA particle- and tip-enhanced nanoscale raman spectroscopy with a parabolic-mirror microscope,” J. Microsc. 229(2), 247–253 (2008).
[Crossref] [PubMed]

Stavrakas, I.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

Stein, S. C.

Stolz, W.

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

Tao, G. L.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Tarrach, G.

Triantis, D.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

Triulzi, R. C.

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Uchida, M.

M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
[Crossref] [PubMed]

Valentijn, J. A.

L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
[Crossref] [PubMed]

Valentijn, K. M.

L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
[Crossref] [PubMed]

van Driel, L. F.

L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
[Crossref] [PubMed]

van Rijnsoever, C.

C. van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5(11), 973–980 (2008).
[Crossref] [PubMed]

Villa, E.

A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
[Crossref] [PubMed]

Vollmer, M.

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

Wackenhut, F.

A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).

Weisenburger, S.

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

S. Weisenburger, B. Jing, A. Renn, and V. Sandoghdar, “Cryogenic localization of single molecules with angstrom precision,” Proc. SPIE 8815, 88150D (2013).
[Crossref]

Yoshita, M.

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73(5), 635–637 (1999).
[Crossref]

Yu, W. W.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

Zhuang, X. W.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Zondervan, R.

R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, “Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels,” J. Phys. Chem. A 108(10), 1657–1665 (2004).
[Crossref]

ACS Nano (1)

T. L. Jennings, S. G. Becker-Catania, R. C. Triulzi, G. L. Tao, B. Scott, K. E. Sapsford, S. Spindel, E. Oh, V. Jain, J. B. Delehanty, D. E. Prasuhn, K. Boeneman, W. R. Algar, and I. L. Medintz, “Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis,” ACS Nano 5(7), 5579–5593 (2011).
[Crossref] [PubMed]

Appl. Phys. B (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116, (3) 617–622 (2014).
[Crossref]

Appl. Phys. Lett. (2)

M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73(5), 635–637 (1999).
[Crossref]

M. Vollmer, H. Giessen, W. Stolz, W. W. Ruhle, L. Ghislain, and V. Elings, “Ultrafast nonlinear subwavelength solid immersion spectroscopy at t = 8 K,” Appl. Phys. Lett. 74(13), 1791–1793 (1999).
[Crossref]

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

BBA-Bioenergetics (1)

Y. Shibata, W. Katoh, T. Chiba, K. Namie, N. Ohnishi, J. Minagawa, H. Nakanishi, T. Noguchi, and H. Fukumura, “Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research,” BBA-Bioenergetics 1837(6), 880–887 (2014).
[Crossref] [PubMed]

Chem. Mater. (1)

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003).
[Crossref]

Chem. Phys. Chem. (2)

S. Weisenburger, B. Jing, D. Hanni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” Chem. Phys. Chem. 15(4), 763–770 (2014).
[PubMed]

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and raman near-field optical microscopy,” Chem. Phys. Chem. 9(2), 316–320 (2008).
[PubMed]

Curr. Opin. Chem. Biol. (1)

R. Kaufmann, C. Hagen, and K. Grunewald, “Fluorescence cryo-microscopy: current challenges and prospects,” Curr. Opin. Chem. Biol. 20, 86–91 (2014).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

Cytometry A (1)

G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images,” Cytometry A 71A(9), 724–736 (2007).
[Crossref]

Eur. J. Cell Biol. (1)

L. F. van Driel, J. A. Valentijn, K. M. Valentijn, R. I. Koning, and A. J. Koster, “Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells,” Eur. J. Cell Biol. 88(11), 669–684 (2009).
[Crossref] [PubMed]

J. Microsc. (4)

C. L. Schwartz, V. I. Sarbash, F. I. Ataullakhanov, J. R. Mcintosh, and D. Nicastro, “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching,” J. Microsc. 227(2), 98–109 (2007).
[Crossref] [PubMed]

P. Anger, A. Feltz, T. Berghaus, and A. J. Meixner, “Near-field and confocal surface-enhanced resonance raman spectroscopy at cryogenic temperatures,” J. Microsc. 209, 162–166 (2003).
[Crossref] [PubMed]

M. A. Le Gros, G. McDermott, M. Uchida, C. G. Knoechel, and C. A. Larabell, “High-aperture cryogenic light microscopy,” J. Microsc. 235(1), 1–8 (2009).
[Crossref] [PubMed]

C. Stanciu, M. Sackrow, and A. J. Meixner, “High NA particle- and tip-enhanced nanoscale raman spectroscopy with a parabolic-mirror microscope,” J. Microsc. 229(2), 247–253 (2008).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, “Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels,” J. Phys. Chem. A 108(10), 1657–1665 (2004).
[Crossref]

J. Phys. Chem. B (1)

A. Konrad, F. Wackenhut, M. Hussels, A. J. Meixner, and M. Brecht, “Temperature dependent luminescence and dephasing of gold nanorods,” J. Phys. Chem. B 117(41), 21476–21482 (2013).

Methods Cell Biol. (2)

J. Dubochet, “The physics of rapid cooling and its implications for cryoimmobilization of cells,” Methods Cell Biol. 79(79), 7–21 (2007).
[Crossref] [PubMed]

A. Rigort, E. Villa, F. J. B. Bauerlein, B. D. Engel, and J. M. Plitzko, “Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining,” Methods Cell Biol. 111, 259–281 (2012).
[Crossref] [PubMed]

Methods Enzymol. (1)

A. Briegel, S. Y. Chen, A. J. Koster, J. M. Plitzko, C. L. Schwartz, and G. J. Jensen, “Correlated light and electron cryo-microscopy,” Methods Enzymol. 481, 317–341 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

R. Kaufmann, P. Schellenberger, E. Seiradake, I. M. Dobbie, E. Y. Jones, I. Davis, C. Hagen, and K. Grunewald, “Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions,” Nano Lett. 14(7), 4171–4175 (2014).
[Crossref] [PubMed]

Nat. Methods (3)

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods 5(2), 155–157 (2008).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

C. van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5(11), 973–980 (2008).
[Crossref] [PubMed]

Nat. Protoc. (1)

M. Friedenberger, M. Bode, A. Krusche, and W. Schubert, “Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures,” Nat. Protoc. 2(9), 2285–2294 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Proc. SPIE (1)

S. Weisenburger, B. Jing, A. Renn, and V. Sandoghdar, “Cryogenic localization of single molecules with angstrom precision,” Proc. SPIE 8815, 88150D (2013).
[Crossref]

Rev. Sci. Instrum. (3)

M. Hussels, A. Konrad, and M. Brecht, “Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures,” Rev. Sci. Instrum. 83(12), 123706 (2012).
[Crossref]

V. Hirschfeld and C. G. Hubner, “A sensitive and versatile laser scanning confocal optical microscope for single-molecule fluorescence at 77 K,” Rev. Sci. Instrum. 81(11), p. 113705, Nov.2010.
[Crossref] [PubMed]

F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” Rev. Sci. Instrum. 81(9), 093705 (2010).
[Crossref] [PubMed]

Scanning (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Science (3)

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

Ultramicroscopy (2)

E. A. Smith, B. P. Cinquin, M. Do, G. McDermott, M. A. Le Gros, and C. A. Larabell, “Correlative cryogenic tomography of cells using light and soft x-rays,” Ultramicroscopy 143, 33–40 (2014).
[Crossref]

M. Schorb and J. A. G. Briggs, “Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity,” Ultramicroscopy 143, 24–32 (2014).
[Crossref]

Other (1)

M. Hussels and M. Brecht, “Vorrichtung und Verfahren zum Transferieren eines Probenhalters von einer Transportvorrichtung zu einer Scanvorrichtung,” PatentDE102012218377 B3, April17(2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the low and room temperature setup for confocal imaging.
Fig. 2
Fig. 2 Sketch of the focusing system (red quadrangle in Fig. 1) for low temperature microscopy adapted from [16]. With a special sample transfer system, consisting of x, y, z, steppers (red), to transfer frozen (also vitrified) samples into the precooled cryostat.
Fig. 3
Fig. 3 Immersion procedure. a) Sample placed on sample holder b) precooled (liquid nitrogen) sample holder with sample c) applying of 1-propanol droplets directly on the glass coverslips d) freezing of 1-propanol.
Fig. 4
Fig. 4 Left: QD images recorded at 160 K with an air MO (NA = 0.85). Right: QD images recorded at 160 K with an immersion MO (NA = 1.25) with 1-propanol as immersion liquid.
Fig. 5
Fig. 5 Left: Three confocal luminescence images showing each a single QD recorded for different conditions. A1) enlarged section of a QD at 160 K recorded with an air MO with an NA = 0.85. A2) line section (blue line) indicated by the white line in Fig. A1 with Gaussian fit (red line, FWHM = 0.574 µm) to determine the PSF. A3) distribution of the FWHM measured with an air MO. B1) confocal image of a QD at 160 K with 1-propanol immersed MO (NA = 1.25). B2) line section (blue line) indicated by the white line in Fig. B1 with Gaussian fit (red line, FWHM = 0.442 µm). B3) distribution of the FWHM measured with an immersion MO immersed with 1-propanol. C1) confocal image of a QD at 300 K with the same MO (NA = 1.25) oil immersed. C2) line section (blue line) indicated by the white line in Fig. C1 with Gaussian fit (red line, FWHM = 0.415 µm). C3) distribution of the FWHM measured with an immersion MO immersed with immersion oil.

Tables (1)

Tables Icon

Table 1 Comparison of our experimental results with an air objective, an oil immersed objective and the same objective immersed with 1-propanol.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N A = n sin ( α ) ,
d = λ 2 N A ,

Metrics