Abstract

We present the design of two novel adiabatic tapered coupling structures that allow efficient and alignment tolerant mode conversion between a III–V membrane waveguide and a single-mode SOI waveguide in active heterogeneously integrated devices. Both proposed couplers employ a broad intermediate waveguide to facilitate highly alignment tolerant coupling. This robustness is needed to comply with the current misalignment tolerance requirements for high-throughput transfer printing. The proposed coupling structures are expected to pave the way for transfer-printing-based heterogeneous integration of active III–V devices such as semiconductor optical amplifiers (SOAs), photodetectors, electro-absorption modulators (EAMs) and single wavelength lasers on silicon photonic integrated circuits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser

Jing Zhang, Bahawal Haq, James O’Callaghan, Angieska Gocalinska, Emanuele Pelucchi, António José Trindade, Brian Corbett, Geert Morthier, and Gunther Roelkens
Opt. Express 26(7) 8821-8830 (2018)

Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters

Andreas De Groote, Paolo Cardile, Ananth Z. Subramanian, Alin M. Fecioru, Christopher Bower, Danae Delbeke, Roel Baets, and Günther Roelkens
Opt. Express 24(13) 13754-13762 (2016)

Ultracompact tapered coupler for the Si/III–V heterogeneous integration

Qiangsheng Huang, Jianxin Cheng, Liu Liu, Yongbo Tang, and Sailing He
Appl. Opt. 54(14) 4327-4332 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [Crossref]
  2. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [Crossref]
  3. X. Wang, W. Shi, H. Yun, S. Grist, N. a. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547 (2012).
    [Crossref] [PubMed]
  4. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 673–675 (2004).
    [Crossref]
  5. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
    [Crossref] [PubMed]
  6. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  7. D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
    [Crossref]
  8. K. Tanabe, K. Watanabe, and Y. Arakawa, “III–V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 1–6 (2012).
    [Crossref]
  9. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
    [Crossref]
  10. S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
    [Crossref]
  11. E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
    [Crossref]
  12. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
    [Crossref]
  13. H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
    [Crossref]
  14. A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
    [Crossref]
  15. J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
    [Crossref]
  16. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
    [Crossref]
  17. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
    [Crossref] [PubMed]
  18. G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5, 6600410 (2013).
    [Crossref]
  19. Q. Huang, J. Cheng, L. Liu, Y. Tang, and S. He, “Ultracompact tapered coupler for the Si/III–V heterogeneous integration,” Appl. Opt. 54, 4327–4339 (2015).
    [Crossref] [PubMed]
  20. D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).
  21. imec-ePIXfab SiPhotonics: ISIPP25G+, “imec-ePIXfab SiPhotonics: ISIPP25G+”, http://www.europractice-ic.com/SiPhotonics_technology_imec_ISIPP25G.php .
  22. X. Sun and A. Yariv, “Engineering supermode silicon/III–V hybrid waveguides for laser oscillation,” J. Opt. Soc. Am. B 25, 923–926 (2008).
    [Crossref]
  23. X. Fu, J. Cheng, Q. Huang, Y. Hu, W. Xie, M. Tassaert, J. Verbist, K. Ma, J. Zhang, K. Chen, C. Zhang, Y. Shi, J. Bauwelinck, G. Roelkens, L. Liu, and S. He, “5 × 20 Gb/s heterogeneously integrated III–V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer,” Opt. Express 23, 18686–18693 (2015).
    [Crossref] [PubMed]
  24. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III–V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).
    [Crossref] [PubMed]

2015 (2)

2013 (5)

2012 (6)

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

X. Wang, W. Shi, H. Yun, S. Grist, N. a. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547 (2012).
[Crossref] [PubMed]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III–V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 1–6 (2012).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

2011 (1)

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

2010 (2)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

2008 (2)

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

X. Sun and A. Yariv, “Engineering supermode silicon/III–V hybrid waveguides for laser oscillation,” J. Opt. Soc. Am. B 25, 923–926 (2008).
[Crossref]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

2004 (4)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 673–675 (2004).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
[Crossref]

Amaratunga, G.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Arakawa, Y.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III–V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 1–6 (2012).
[Crossref]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 673–675 (2004).
[Crossref]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bauwelinck, J.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Berggren, J.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bolk, J.

Bordel, D.

Bower, C.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Bowers, J. E.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5, 6600410 (2013).
[Crossref]

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Chae, J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Chapman, D.

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Chen, C.-L.

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Chen, K.

Cheng, J.

Cho, K.-S.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Choi, B. L.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Chrostowski, L.

Chuwongin, S.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Corbett, B.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Dawson, M.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

De Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

De Vries, T.

Duan, G.-H.

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III–V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).
[Crossref] [PubMed]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref] [PubMed]

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Fedeli, J. M.

Fedeli, J.-M.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref] [PubMed]

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Fu, X.

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 673–675 (2004).
[Crossref]

Geluk, E. J.

Grist, S.

Gu, E.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

Gubbins, M. A.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Guilhabert, B.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

Hammar, M.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

He, S.

Heck, M. J. R.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5, 6600410 (2013).
[Crossref]

Hu, Y.

Huang, Q.

Humphreys, C. J.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

Jaeger, N. a. F.

Jany, C.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Juodawlkis, P.

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Justice, J.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Keyvaninia, S.

Khang, D.-Y.

E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
[Crossref]

Kim, D. H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Kim, J. M.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Kim, J. W.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Kim, K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Kim, T.-H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Kuk, Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Kurczveil, G.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5, 6600410 (2013).
[Crossref]

Kwon, J.-Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Lamponi, M.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref] [PubMed]

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Laurand, N.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

Le Liepvre, A.

Lee, E. K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Lee, K.

E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
[Crossref]

Lee, S. J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Lee, S. Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

Lelarge, F.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref] [PubMed]

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III–V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).
[Crossref] [PubMed]

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Liu, L.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Ma, K.

Ma, Z.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Make, D.

Massoubre, D.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

Meitl, M.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Menard, E.

E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
[Crossref]

Messaoudene, S.

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III–V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).
[Crossref] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Mooney, M. B.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Morthier, G.

Muneeb, M.

Napoleone, A.

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Nuzzo, R.

E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
[Crossref]

Oakley, D.

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 673–675 (2004).
[Crossref]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Peters, J. D.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5, 6600410 (2013).
[Crossref]

Pintus, P.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5, 6600410 (2013).
[Crossref]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

Raday, O.

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

Roelkens, G.

X. Fu, J. Cheng, Q. Huang, Y. Hu, W. Xie, M. Tassaert, J. Verbist, K. Ma, J. Zhang, K. Chen, C. Zhang, Y. Shi, J. Bauwelinck, G. Roelkens, L. Liu, and S. He, “5 × 20 Gb/s heterogeneously integrated III–V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer,” Opt. Express 23, 18686–18693 (2015).
[Crossref] [PubMed]

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III–V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).
[Crossref] [PubMed]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref] [PubMed]

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
[Crossref]

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Rogers, J.

E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
[Crossref]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Seo, J.-H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Shi, W.

Shi, Y.

Shuai, Y.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Smalbrugge, B.

Smit, M.

Stankovic, S.

Sun, X.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III–V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 1–6 (2012).
[Crossref]

Tang, Y.

Tassaert, M.

Thourhout, D. V.

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

Trindade, A.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Van Landschoot, L.

Van Thourhout, D.

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III–V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).
[Crossref] [PubMed]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref] [PubMed]

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Van Veldhoven, P.

Verbist, J.

Verstuyft, S.

Wang, X.

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III–V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 1–6 (2012).
[Crossref]

Watson, I.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Xie, W.

Yang, H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Yang, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Yariv, A.

Yun, H.

Zhang, C.

Zhang, J.

Zhao, D.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Zhou, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Zhu, D.

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

2012 Int. Conf. Solid State Dev. Mater. (1)

D. V. Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, and G.-H. Duan, “Optimization of taper structures for III–V on Silicon lasers,” 2012 Int. Conf. Solid State Dev. Mater. A-1-5, 524–525 (2012).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84, 5398–5400 (2004).
[Crossref]

A. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. Watson, C. J. Humphreys, and M. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin alingan light-emitting diodes onto mechanically flexible substrates,” Appl. Phys. Lett. 103, 253302 (2013).
[Crossref]

ECS Trans. (1)

D. Liang, A. Fang, D. Oakley, A. Napoleone, D. Chapman, C.-L. Chen, P. Juodawlkis, O. Raday, and J. E. Bowers, “150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits,” ECS Trans. 16, 235–241 (2008).
[Crossref]

IEEE Photon. J. (1)

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5, 6600410 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G.-H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 673–675 (2004).
[Crossref]

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Nat. Photonics (4)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5, 176–182 (2011).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor,” Nature 427, 615–619 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III–V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 1–6 (2012).
[Crossref]

Other (1)

imec-ePIXfab SiPhotonics: ISIPP25G+, “imec-ePIXfab SiPhotonics: ISIPP25G+”, http://www.europractice-ic.com/SiPhotonics_technology_imec_ISIPP25G.php .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Overview of a typical active silicon photonic integration platform. A local opening in the back-end stack contains the processed III–V device coupon.
Fig. 2
Fig. 2 Process flow for transfer printing a III–V patterned device onto a silicon target substrate. (a) III–V source wafer; (b) Patterning of device and release layer; (c) Definition of tethers for device anchoring; (d) Removal of release layer; (e) Device pick-up from source; (f) Device release on target.
Fig. 3
Fig. 3 Schematic of the adiabatic tapered coupler. (a) 3D view; (b) Projected cross-sectional view with indication of the different layers; (c) Top view with cross-sectional views along the coupling structure.
Fig. 4
Fig. 4 Optimisation of Coupling Section 1. (a) Schematic of Coupling Section 1; (b) Schematic of the interface at the end of Coupling Section 1; (c) Transmission at the interface at the end of Coupling Section 1 versus width of the n-InP rib waveguide for different thicknesses of the n-InP bottom cladding, wIII–V tip = 400 nm; (d) Optimum choice of the n-InP rib waveguide width versus thickness of the n-InP bottom cladding; (e) Taper coupling efficiency versus taper length for different values of the III–V taper tip width, tn–clad = 900 nm and wn–clad, start = 3 μm; (f) Taper coupling efficiency versus III–V taper tip width for L1 = 150 μm, tn–clad = 900 nm and wn–clad, start = 3 μm.
Fig. 5
Fig. 5 Optimisation of Coupling Section 2. (a) Schematic of Coupling Section 2; (b) Taper coupling efficiency versus taper length for different values of the InP waveguide end width.
Fig. 6
Fig. 6 Optimisation of Coupling Section 3. (a) Schematic of Coupling Section 3; (b) Schematic of interface at the end of Coupling Section 3; (c) Transmission at the interface at the end of Coupling Section 3 versus width of the silicon waveguide for different values of the III–V taper tip width, tDVS-BCB = 50 nm; (d) Transmission at the interface at the end of Coupling Section 3 versus width of the silicon waveguide for different values of the III–V taper tip width, tDVS-BCB = 150 nm; (e) Transmission at the interface at the end of Coupling Section 3 versus III–V taper tip width for different values of the DVS-BCB thickness, wsilicon = 2 μm; (f) Taper coupling efficiency versus taper length for different values of the DVS-BCB thickness, wsilicon = 2 μm, wIM = 1.1 μm.
Fig. 7
Fig. 7 Overall coupling structure. (a) Coupling efficiency versus length of Coupling Section 3 (L3) for different lateral alignment offsets and values of the III–V taper tip width; (b) Coupling efficiency versus lateral alignment offset for different values of the III–V taper tip width, L3 = 255 μm.
Fig. 8
Fig. 8 Overall coupling structure. Light propagation from the III–V waveguide to the SOI waveguide in the overall coupling structure for wIII–V tip = 400 nm. Mode profiles along the coupler are indicated as well.
Fig. 9
Fig. 9 Wavelength dependence of the coupler efficiency for the overall optimised coupling structure with n-InP intermediate waveguide, wIII–V tip = 400 nm.
Fig. 10
Fig. 10 (a) Schematic of the adiabatic-taper-based coupling scheme using an intermediate polymer waveguide; (b) Butt-coupling efficiency at the III–V/polymer interface as a function of polymer waveguide thickness for different thicknesses of the n-InP bottom cladding. The III–V and polymer waveguide are assumed to be 5 μm wide.
Fig. 11
Fig. 11 Optimisation of the SOI taper coupling section. (a) Top view of the taper coupling section; (b) Cross-sectional view along the taper; (c) Taper coupling efficiency versus taper length for different polymer thicknesses, wpolymer = 5 μm and wsilicon tip = 120 nm; (d) Taper coupling efficiency versus taper length for different polymer thicknesses, wpolymer = 5 μm and wsilicon tip = 150 nm; (e) Influence of the SOI taper tip width on the coupling efficiency for different polymer thicknesses, wpolymer = 5 μm; (f) Taper coupling efficiency versus polymer width for different taper tips, tpolymer = 1 μm.
Fig. 12
Fig. 12 Overall coupling structure. (a) Coupling efficiency versus taper length for different lateral alignment offsets; (b) Coupling efficiency versus lateral alignment offset.
Fig. 13
Fig. 13 Overall coupling structure. Light propagation from the III–V waveguide to the SOI waveguide in the overall coupling structure. Mode profiles along the coupler are indicated as well.
Fig. 14
Fig. 14 Wavelength dependence of the coupler efficiency for the overall optimised coupling structure with polymer intermediate waveguide.

Tables (1)

Tables Icon

Table 1 Detailed III–V Epitaxial Layer Stack

Metrics