Abstract

High speed data modulation based on bandwidth limited devices has been considered as a cost-effective way to upgrade 10G-EPON to the next generation 100G-EPON. In this paper, we experimentally demonstrate the modulation, fiber transmission and reception of 25-Gb/s signal based on directly modulated laser and photo-detector both operating at 10 GHz. Instead of digital signal processing, the chirp management, dispersion compensation and frequency equalization in our scheme are realized in optical domain using a single delay interferometer. Three popular formats are investigated, including NRZ-OOK, PAM-4 and duobinary. According to the experimental results, the NRZ-OOK format shows its superiority in both launch power and receiver sensitivity, which provides a cost-effective solution for the construction of 100-Gb/s TWDM-PON.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON

Zhengxuan Li, Lilin Yi, Xiaodong Wang, and Weisheng Hu
Opt. Express 23(16) 20249-20256 (2015)

Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system

Meihua Bi, Shilin Xiao, Hao He, Lilin Yi, Zhengxuan Li, Jun Li, Xuelin Yang, and Weisheng Hu
Opt. Express 21(14) 16528-16535 (2013)

Ultra-low-loss optical fiber enabling purely passive 10 Gb/s PON systems with 100 km length

John D. Downie, A. Boh Ruffin, and Jason Hurley
Opt. Express 17(4) 2392-2399 (2009)

References

  • View by:
  • |
  • |
  • |

  1. 40 gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T Recommendation G.989.1, 2013 http://www.itu.int/rec/T-REC-G.989.1-201303-I .
  2. IEEE 802.3 Ethernet Working Group, “Feasibility Assessment for the Next Generation of EPON,” (2015).
  3. H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.
  4. Z. Ye, S. Li, N. Cheng, and X. Liu, “Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4× 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization,” in Proc. ECOC (2015), pp. 1–3.
  5. V. Houtsma and D. van Veen, “Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components,” in Proc. ECOC (2015), postdeadline paper.
    [Crossref]
  6. D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proc. ECOC (2014), pp. 1–3.
    [Crossref]
  7. J. L. Wei, K. Grobe, C. Sanchez, E. Giacoumidis, and H. Griesser, “Comparison of cost- and energy-efficient signal modulations for next generation passive optical networks,” Opt. Express 23(22), 28271–28281 (2015).
    [Crossref] [PubMed]
  8. Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).
  9. Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
    [Crossref]
  10. Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
    [Crossref]
  11. N. Cheng, M. Zhou, and F. J. Effenberger, “10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services [Invited],” IEEE J. Opt. Commun. Netw. 7(1), A87–A96 (2015).
    [Crossref]
  12. Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3991–3998 (2014).
    [Crossref]
  13. Z. Li, L. Yi, X. Wang, and W. Hu, “28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON,” Opt. Express 23(16), 20249–20256 (2015).
    [Crossref] [PubMed]
  14. H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
    [Crossref]
  15. Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.
  16. Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
    [Crossref]
  17. Z. Li, L. Yi, and W. Hu, “Comparison of downstream transmitters for high loss budget of long-reach 10G-PON,” in Proc. OFC (2014), paper Tu2C.4.
    [Crossref]
  18. J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
    [Crossref]
  19. T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
    [Crossref]
  20. J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
    [Crossref]
  21. C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
    [Crossref]

2015 (5)

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

N. Cheng, M. Zhou, and F. J. Effenberger, “10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services [Invited],” IEEE J. Opt. Commun. Netw. 7(1), A87–A96 (2015).
[Crossref]

Z. Li, L. Yi, X. Wang, and W. Hu, “28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON,” Opt. Express 23(16), 20249–20256 (2015).
[Crossref] [PubMed]

J. L. Wei, K. Grobe, C. Sanchez, E. Giacoumidis, and H. Griesser, “Comparison of cost- and energy-efficient signal modulations for next generation passive optical networks,” Opt. Express 23(22), 28271–28281 (2015).
[Crossref] [PubMed]

2014 (1)

2011 (1)

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

2008 (1)

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

2006 (1)

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Achouche, M.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Adamiecki, A. L.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

An, Y.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
[Crossref]

Angelini, P.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Barry, L. P.

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

Bi, M.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3991–3998 (2014).
[Crossref]

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

Blache, F.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Buchmann, P.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Caillaud, C.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Chanclou, P.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Charbonnier, P.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Chen, W.

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.

Cheng, N.

N. Cheng, M. Zhou, and F. J. Effenberger, “10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services [Invited],” IEEE J. Opt. Commun. Netw. 7(1), A87–A96 (2015).
[Crossref]

Z. Ye, S. Li, N. Cheng, and X. Liu, “Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4× 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization,” in Proc. ECOC (2015), pp. 1–3.

Ding, Y.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
[Crossref]

Duelk, M.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Duval, B.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Effenberger, F. J.

N. Cheng, M. Zhou, and F. J. Effenberger, “10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services [Invited],” IEEE J. Opt. Commun. Netw. 7(1), A87–A96 (2015).
[Crossref]

Eiselt, M.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Eiselt, N.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Elbers, J.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Fu, S.

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.

Giacoumidis, E.

Gnauck, A.

D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Griesser, H.

J. L. Wei, K. Grobe, C. Sanchez, E. Giacoumidis, and H. Griesser, “Comparison of cost- and energy-efficient signal modulations for next generation passive optical networks,” Opt. Express 23(22), 28271–28281 (2015).
[Crossref] [PubMed]

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Grobe, K.

J. L. Wei, K. Grobe, C. Sanchez, E. Giacoumidis, and H. Griesser, “Comparison of cost- and energy-efficient signal modulations for next generation passive optical networks,” Opt. Express 23(22), 28271–28281 (2015).
[Crossref] [PubMed]

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Guo, Y.

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

Hang, Z.

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

He, H.

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3991–3998 (2014).
[Crossref]

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

Houtsma, V.

D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Hu, S.

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

Hu, W.

Z. Li, L. Yi, X. Wang, and W. Hu, “28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON,” Opt. Express 23(16), 20249–20256 (2015).
[Crossref] [PubMed]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3991–3998 (2014).
[Crossref]

Z. Li, L. Yi, and W. Hu, “Comparison of downstream transmitters for high loss budget of long-reach 10G-PON,” in Proc. OFC (2014), paper Tu2C.4.
[Crossref]

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

Iannone, P.

D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Jorge, F.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Kim, H.

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

Konczykowska, A.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Kossel, M.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Kuang, G.

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

Lanteri, D.

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Li, J.

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

Li, S.

Z. Ye, S. Li, N. Cheng, and X. Liu, “Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4× 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization,” in Proc. ECOC (2015), pp. 1–3.

Li, Z.

Z. Li, L. Yi, X. Wang, and W. Hu, “28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON,” Opt. Express 23(16), 20249–20256 (2015).
[Crossref] [PubMed]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3991–3998 (2014).
[Crossref]

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

Z. Li, L. Yi, and W. Hu, “Comparison of downstream transmitters for high loss budget of long-reach 10G-PON,” in Proc. OFC (2014), paper Tu2C.4.
[Crossref]

Liu, X.

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

Z. Ye, S. Li, N. Cheng, and X. Liu, “Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4× 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization,” in Proc. ECOC (2015), pp. 1–3.

Man, J.

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.

Menolfi, C.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Monroy, I. T.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Morf, T.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Ou, H.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
[Crossref]

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.

Peucheret, C.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
[Crossref]

Reutemann, R.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Riesgo, A. L.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
[Crossref]

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.

Ruegg, M.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Sanchez, C.

Schmatz, M. L.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Seoane, J.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
[Crossref]

Sinsky, J. H.

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

Song, X.

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.

Toifl, T.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

van Veen, D.

D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Vegas-Olmos, J. J.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Wang, X.

Wei, J.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

Wei, J. L.

Wei, W.

Weiss, J.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

Xiao, S.

Yang, X.

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

Ye, Z.

Z. Ye, S. Li, N. Cheng, and X. Liu, “Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4× 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization,” in Proc. ECOC (2015), pp. 1–3.

Yi, L.

Z. Li, L. Yi, X. Wang, and W. Hu, “28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON,” Opt. Express 23(16), 20249–20256 (2015).
[Crossref] [PubMed]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3991–3998 (2014).
[Crossref]

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

Z. Li, L. Yi, and W. Hu, “Comparison of downstream transmitters for high loss budget of long-reach 10G-PON,” in Proc. OFC (2014), paper Tu2C.4.
[Crossref]

Yin, Y.

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

Yu, Y.

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

Zeng, L.

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.

Zhang, D.

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

Zhang, H.

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.

Zhao, J.

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

Zhou, M.

N. Cheng, M. Zhou, and F. J. Effenberger, “10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services [Invited],” IEEE J. Opt. Commun. Netw. 7(1), A87–A96 (2015).
[Crossref]

Zhu, S.

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

Zhu, Y.

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

IEEE J. Opt. Commun. Netw. (2)

Y. Guo, S. Zhu, G. Kuang, Y. Yin, D. Zhang, and X. Liu, “Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission [invited],” IEEE J. Opt. Commun. Netw. 7(3), A363–A371 (2015).
[Crossref]

N. Cheng, M. Zhou, and F. J. Effenberger, “10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services [Invited],” IEEE J. Opt. Commun. Netw. 7(1), A87–A96 (2015).
[Crossref]

IEEE J. Solid-State Circuits (1)

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(4), 954–965 (2006).
[Crossref]

IEEE Photonics J. (1)

Z. Hang, S. Hu, J. Zhao, Y. Zhu, Y. Yu, and L. P. Barry, “Chirp-Compensated DBR Lasers for TWDM-PON Applications,” IEEE Photonics J. 7(1), 1–9 (2015).

IEEE Photonics Technol. Lett. (1)

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. H. Sinsky, A. Konczykowska, A. L. Adamiecki, F. Jorge, and M. Duelk, “39.4-Gb/s duobinary transmission over 24.4 m of coaxial cable using a custom indium phosphide duobinary-to-binary converter integrated circuit,” IEEE Trans. Microw. Theory Tech. 56(12), 3162–3169 (2008).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (12)

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental Demonstration of a Symmetric 40-Gb/s TWDM-PON,” in Proc. OFC (2013), paper NTh4F.3.
[Crossref]

40 gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T Recommendation G.989.1, 2013 http://www.itu.int/rec/T-REC-G.989.1-201303-I .

IEEE 802.3 Ethernet Working Group, “Feasibility Assessment for the Next Generation of EPON,” (2015).

H. Zhang, S. Fu, J. Man, W. Chen, X. Song, and L. Zeng, “30km Downstream Transmission Using 4×25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC (2014), paper M2I.3.

Z. Ye, S. Li, N. Cheng, and X. Liu, “Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4× 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization,” in Proc. ECOC (2015), pp. 1–3.

V. Houtsma and D. van Veen, “Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components,” in Proc. ECOC (2015), postdeadline paper.
[Crossref]

D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proc. ECOC (2015), pp. 32–33.
[Crossref]

C. Caillaud, P. Chanclou, F. Blache, P. Angelini, B. Duval, P. Charbonnier, D. Lanteri, and M. Achouche, “High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON,” in Proc. ECOC (2014), pp. 1–3.
[Crossref]

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Modulation speed enhancement of directly modulated lasers using a micro-ring resonator,” in Proc. of Optical Interconnects (2012), pp. 32–33.

Y. An, A. L. Riesgo, J. Seoane, Y. Ding, H. Ou, and C. Peucheret, “Transmission property of directly modulated signals enhanced by a micro-ring resonator,” in Proc. OECC (2012), pp. 915–916.
[Crossref]

Z. Li, L. Yi, and W. Hu, “Comparison of downstream transmitters for high loss budget of long-reach 10G-PON,” in Proc. OFC (2014), paper Tu2C.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Proposed 100-Gb/s TWDM-PON system.
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 (a) Frequency response of DML and PIN, (b) signal spectrum of 25-Gb/s OOK signal with and without OEQ.
Fig. 4
Fig. 4 Optical spectrum of the 25-Gb/s OOK signal before and after DI.
Fig. 5
Fig. 5 Eye diagrams of the 25-Gb/s OOK signal with and without DI in BtB, 20-km and 40-km fiber transmission cases.
Fig. 6
Fig. 6 Measured BER curves of the 25-Gbs NRZ-OEQ signal in BtB, 20-km and 40-km fiber transmission cases.
Fig. 7
Fig. 7 (i)-(iv) Measured eye diagrams and (v) optical spectrum of 25-Gb/s PAM-4 signal.
Fig. 8
Fig. 8 Measured BER of 25 Gb/s PAM-4 signal.

Tables (1)

Tables Icon

Table 1 Comparison of NRZ-OEQ, Duobinary and PAM-4 formats

Metrics