Abstract

The detection of low-concentration biomarkers is expected to facilitate the early diagnosis of severe diseases, including malignant tumors. Using photonic crystal nanolaser sensors, we detected prostate-specific antigen (PSA) from a concentration of 1 fM, which is difficult to detect by conventional enzyme-linked immunosorbent assay. The signal intensity and stability were improved by using a surfactant (i.e., ethanolamine). Even when a contaminant such as bovine serum albumin was mixed into the PSA sample, thereby increasing the concentration of the contaminant ten billion times, it was still possible to maintain a high level of detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture

Shih-Hung Sun, Mon-Juan Lee, Yun-Han Lee, Wei Lee, Xiaolong Song, and Chao-Yuan Chen
Biomed. Opt. Express 6(1) 245-256 (2015)

Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors

Shoji Hachuda, Shota Otsuka, Shota Kita, Toshinari Isono, Michimasa Narimatsu, Keisuke Watanabe, Yoshio Goshima, and Toshihiko Baba
Opt. Express 21(10) 12815-12821 (2013)

Hybrid cavity-coupled plasmonic biosensors for low concentration, label-free and selective biomolecular detection.

Abraham Vázquez-Guardado, Alexandra Smith, Wade Wilson, Jeanette Ortega, J. Manuel Perez, and Debashis Chanda
Opt. Express 24(22) 25785-25796 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
    [Crossref]
  2. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
    [Crossref]
  3. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
    [Crossref] [PubMed]
  4. S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express 21(10), 12815–12821 (2013).
    [Crossref] [PubMed]
  5. D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
    [Crossref]
  6. H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura, and T. Baba, “Living-cell imaging using a photonic crystal nanolaser array,” Opt. Express 23(13), 17056–17066 (2015).
    [Crossref] [PubMed]
  7. M. K. Brawer, “Prostate-specific antigen,” Semin. Surg. Oncol. 18(1), 3–9 (2000).
    [Crossref] [PubMed]
  8. H. Yu, E. P. Diamandis, A. F. Prestigiacomo, and T. A. Stamey, “Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy,” Clin. Chem. 41(3), 430–434 (1995).
    [PubMed]
  9. Y. D. Ivanov, V. M. Govorun, V. A. Bykov, and A. I. Archakov, “Nanotechnologies in proteomics,” Proteomics 6(5), 1399–1414 (2006).
    [Crossref] [PubMed]
  10. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [Crossref] [PubMed]
  11. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  12. N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
    [Crossref]
  13. J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
    [Crossref] [PubMed]
  14. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
    [Crossref] [PubMed]
  15. J. Zhao, Y. Zhang, R. Gao, and S. Liu, “A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section,” Sens. Actuators B Chem. 206, 343–350 (2015).
    [Crossref]
  16. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluidics 4(1-2), 33–52 (2008).
    [Crossref] [PubMed]
  17. C. RoyChaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sens. Actuators B Chem. 210, 310–323 (2015).
    [Crossref]
  18. M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
    [Crossref]
  19. K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
    [Crossref]
  20. K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
    [Crossref] [PubMed]
  21. M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
    [Crossref]
  22. T. Watanabe, H. Abe, Y. Nishijima, and T. Baba, “Array integration of thousands of photonic crystal nanolasers,” Appl. Phys. Lett. 104(12), 121108 (2014).
    [Crossref]
  23. J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci. 329(1), 114–119 (2009).
    [Crossref] [PubMed]

2016 (1)

2015 (6)

H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura, and T. Baba, “Living-cell imaging using a photonic crystal nanolaser array,” Opt. Express 23(13), 17056–17066 (2015).
[Crossref] [PubMed]

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
[Crossref]

J. Zhao, Y. Zhang, R. Gao, and S. Liu, “A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section,” Sens. Actuators B Chem. 206, 343–350 (2015).
[Crossref]

C. RoyChaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sens. Actuators B Chem. 210, 310–323 (2015).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
[Crossref]

2014 (1)

T. Watanabe, H. Abe, Y. Nishijima, and T. Baba, “Array integration of thousands of photonic crystal nanolasers,” Appl. Phys. Lett. 104(12), 121108 (2014).
[Crossref]

2013 (1)

2012 (1)

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

2011 (2)

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

2009 (2)

J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci. 329(1), 114–119 (2009).
[Crossref] [PubMed]

J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
[Crossref] [PubMed]

2008 (3)

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

2006 (1)

Y. D. Ivanov, V. M. Govorun, V. A. Bykov, and A. I. Archakov, “Nanotechnologies in proteomics,” Proteomics 6(5), 1399–1414 (2006).
[Crossref] [PubMed]

2003 (1)

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

2001 (1)

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

2000 (2)

M. K. Brawer, “Prostate-specific antigen,” Semin. Surg. Oncol. 18(1), 3–9 (2000).
[Crossref] [PubMed]

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

1995 (1)

H. Yu, E. P. Diamandis, A. F. Prestigiacomo, and T. A. Stamey, “Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy,” Clin. Chem. 41(3), 430–434 (1995).
[PubMed]

Abe, H.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura, and T. Baba, “Living-cell imaging using a photonic crystal nanolaser array,” Opt. Express 23(13), 17056–17066 (2015).
[Crossref] [PubMed]

T. Watanabe, H. Abe, Y. Nishijima, and T. Baba, “Array integration of thousands of photonic crystal nanolasers,” Appl. Phys. Lett. 104(12), 121108 (2014).
[Crossref]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

Archakov, A. I.

Y. D. Ivanov, V. M. Govorun, V. A. Bykov, and A. I. Archakov, “Nanotechnologies in proteomics,” Proteomics 6(5), 1399–1414 (2006).
[Crossref] [PubMed]

Arita, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Baba, T.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura, and T. Baba, “Living-cell imaging using a photonic crystal nanolaser array,” Opt. Express 23(13), 17056–17066 (2015).
[Crossref] [PubMed]

D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

T. Watanabe, H. Abe, Y. Nishijima, and T. Baba, “Array integration of thousands of photonic crystal nanolasers,” Appl. Phys. Lett. 104(12), 121108 (2014).
[Crossref]

S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express 21(10), 12815–12821 (2013).
[Crossref] [PubMed]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

Brawer, M. K.

M. K. Brawer, “Prostate-specific antigen,” Semin. Surg. Oncol. 18(1), 3–9 (2000).
[Crossref] [PubMed]

Bykov, V. A.

Y. D. Ivanov, V. M. Govorun, V. A. Bykov, and A. I. Archakov, “Nanotechnologies in proteomics,” Proteomics 6(5), 1399–1414 (2006).
[Crossref] [PubMed]

Chen, X.

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
[Crossref]

Cordovez, B.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Cote, R. J.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

Datar, R. H.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

Diamandis, E. P.

H. Yu, E. P. Diamandis, A. F. Prestigiacomo, and T. A. Stamey, “Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy,” Clin. Chem. 41(3), 430–434 (1995).
[PubMed]

Doi, M.

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Endo, T.

Erickson, D.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fill, C.

J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci. 329(1), 114–119 (2009).
[Crossref] [PubMed]

Furumoto, T.

Gao, R.

J. Zhao, Y. Zhang, R. Gao, and S. Liu, “A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section,” Sens. Actuators B Chem. 206, 343–350 (2015).
[Crossref]

Goshima, Y.

Govorun, V. M.

Y. D. Ivanov, V. M. Govorun, V. A. Bykov, and A. I. Archakov, “Nanotechnologies in proteomics,” Proteomics 6(5), 1399–1414 (2006).
[Crossref] [PubMed]

Hachuda, S.

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
[Crossref]

S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express 21(10), 12815–12821 (2013).
[Crossref] [PubMed]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Hansen, K. M.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

Hong, S.

J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
[Crossref] [PubMed]

Imai, Y.

Isono, T.

Ivanov, Y. D.

Y. D. Ivanov, V. M. Govorun, V. A. Bykov, and A. I. Archakov, “Nanotechnologies in proteomics,” Proteomics 6(5), 1399–1414 (2006).
[Crossref] [PubMed]

Kato, S.

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Kim, J.

J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci. 329(1), 114–119 (2009).
[Crossref] [PubMed]

Kim, J. P.

J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
[Crossref] [PubMed]

Kimura, E.

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Kishi, Y.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

Kita, S.

Konishi, N.

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Lee, B. Y.

J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
[Crossref] [PubMed]

Lee, J.

J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
[Crossref] [PubMed]

Liu, S.

J. Zhao, Y. Zhang, R. Gao, and S. Liu, “A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section,” Sens. Actuators B Chem. 206, 343–350 (2015).
[Crossref]

Loncar, M.

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

Majumdar, A.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

Mandal, S.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Matsumoto, K.

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Misawa, H.

Nakada, T.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Narimatsu, M.

Nishijima, Y.

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
[Crossref]

H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura, and T. Baba, “Living-cell imaging using a photonic crystal nanolaser array,” Opt. Express 23(13), 17056–17066 (2015).
[Crossref] [PubMed]

T. Watanabe, H. Abe, Y. Nishijima, and T. Baba, “Array integration of thousands of photonic crystal nanolasers,” Appl. Phys. Lett. 104(12), 121108 (2014).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

Nozaki, K.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Ota, S.

Otsuka, S.

Prestigiacomo, A. F.

H. Yu, E. P. Diamandis, A. F. Prestigiacomo, and T. A. Stamey, “Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy,” Clin. Chem. 41(3), 430–434 (1995).
[PubMed]

Qiu, Y. M.

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

Ren, T.

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
[Crossref]

RoyChaudhuri, C.

C. RoyChaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sens. Actuators B Chem. 210, 310–323 (2015).
[Crossref]

Saito, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Sakemoto, M.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

Samori, T.

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Scherer, A.

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

Seidler, P.

J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci. 329(1), 114–119 (2009).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sim, S. J.

J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
[Crossref] [PubMed]

Stamey, T. A.

H. Yu, E. P. Diamandis, A. F. Prestigiacomo, and T. A. Stamey, “Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy,” Clin. Chem. 41(3), 430–434 (1995).
[PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Takahashi, D.

D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
[Crossref]

Takemura, Y.

Thundat, T.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

Tomitaka, A.

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Wan, L. S.

J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci. 329(1), 114–119 (2009).
[Crossref] [PubMed]

Watanabe, H.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Watanabe, K.

Watanabe, T.

H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura, and T. Baba, “Living-cell imaging using a photonic crystal nanolaser array,” Opt. Express 23(13), 17056–17066 (2015).
[Crossref] [PubMed]

D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

T. Watanabe, H. Abe, Y. Nishijima, and T. Baba, “Array integration of thousands of photonic crystal nanolasers,” Appl. Phys. Lett. 104(12), 121108 (2014).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Wu, G.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

Yang, A. H. J.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Yang, D.

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
[Crossref]

Yang, N.

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
[Crossref]

Yokouchi, Y.

Yu, H.

H. Yu, E. P. Diamandis, A. F. Prestigiacomo, and T. A. Stamey, “Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy,” Clin. Chem. 41(3), 430–434 (1995).
[PubMed]

Yuki, Y.

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Zhang, P.

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
[Crossref]

Zhang, Y.

J. Zhao, Y. Zhang, R. Gao, and S. Liu, “A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section,” Sens. Actuators B Chem. 206, 343–350 (2015).
[Crossref]

Zhao, J.

J. Zhao, Y. Zhang, R. Gao, and S. Liu, “A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section,” Sens. Actuators B Chem. 206, 343–350 (2015).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima, and T. Baba, “Detection of endotoxin using a photonic crystal nanolaser,” Appl. Phys. Lett. 106(13), 131112 (2015).
[Crossref]

T. Watanabe, H. Abe, Y. Nishijima, and T. Baba, “Array integration of thousands of photonic crystal nanolasers,” Appl. Phys. Lett. 104(12), 121108 (2014).
[Crossref]

Biosens. Bioelectron. (1)

J. P. Kim, B. Y. Lee, J. Lee, S. Hong, and S. J. Sim, “Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors,” Biosens. Bioelectron. 24(11), 3372–3378 (2009).
[Crossref] [PubMed]

Clin. Chem. (1)

H. Yu, E. P. Diamandis, A. F. Prestigiacomo, and T. A. Stamey, “Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy,” Clin. Chem. 41(3), 430–434 (1995).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots—design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

J. Colloid Interface Sci. (1)

J. Kim, P. Seidler, L. S. Wan, and C. Fill, “Formation, structure, and reactivity of amino-terminated organic films on silicon substrates,” J. Colloid Interface Sci. 329(1), 114–119 (2009).
[Crossref] [PubMed]

J. Immunol. Methods (1)

K. Matsumoto, N. Konishi, T. Samori, E. Kimura, M. Doi, S. Kato, and Y. Yuki, “ELISA for a complexed antigen with a monoclonal antibody blocking reaction with the free antigen-assay-specific for complexed prostate-specific antigen,” J. Immunol. Methods 234(1-2), 99–106 (2000).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid. Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001).
[Crossref] [PubMed]

Opt. Express (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Proteomics (1)

Y. D. Ivanov, V. M. Govorun, V. A. Bykov, and A. I. Archakov, “Nanotechnologies in proteomics,” Proteomics 6(5), 1399–1414 (2006).
[Crossref] [PubMed]

Semin. Surg. Oncol. (1)

M. K. Brawer, “Prostate-specific antigen,” Semin. Surg. Oncol. 18(1), 3–9 (2000).
[Crossref] [PubMed]

Sens. Actuators B Chem. (3)

J. Zhao, Y. Zhang, R. Gao, and S. Liu, “A new sensitivity improving approach for mass sensors through integrated optimization of both cantilever surface profile and cross-section,” Sens. Actuators B Chem. 206, 343–350 (2015).
[Crossref]

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, “Carbon nanotube based biosensors,” Sens. Actuators B Chem. 207, 690–715 (2015).
[Crossref]

C. RoyChaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sens. Actuators B Chem. 210, 310–323 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Fabricated 5 × 5 GaInAsP photonic crystal nanolaser array and a magnified scanning electron microscope image around one nanolaser which has a NS at the center. Each nanolser (square area) has two side grooves which accelerate the selective wet etching of InP underneath the GaInAsP layer.
Fig. 2
Fig. 2 (a) Surface modification procedure. (b) Laser spectrum at each step of the procedure. (c) Wavelength shift because of PSA as a function of wavelength shift because of PSA antibody. EA was not used. The ± 0.1 nm range of the wavelength shift shows the fluctuation of the nanolaser and measurement.
Fig. 3
Fig. 3 PSA sensing (a) without EA and (b) with EA. Circular (red), square (blue), and triangular (black) plots show the wavelength shift with the anti-PSA antibody, mouse antibody as a negative control, and without antibodies, respectively. Gray area shows the undetectable range of the concentration by ELISA.
Fig. 4
Fig. 4 Distribution of nanolasers showing the corresponding wavelength shifts in repeated trials. Red, blue, and gray bars show the frequencies that correspond to the redshift, blueshift (shift to the short wavelength side), and no significant shift, respectively. The black line shows the Gaussian fitting with average values indicated by the arrow.
Fig. 5
Fig. 5 PSA sensing in the impure sample, where EA was used. Concentrations of the BSA contaminant were (a) 1 μM and (b) 10 μM. Circular (red) and square (blue) plots show the wavelength shift with the PSA antibody and the mouse antibody, respectively.

Metrics