Abstract

We demonstrate spiral integrated Bragg gratings (IBGs) in 60-nm-thick strip waveguides on the silicon-on-insulator (SOI) platform. The length of the spiral IBG is 2 mm, occupying an area of 147 × 141 μm2 with a minimum bending radius of 20 μm. Experiments show that the spiral IBGs exhibit a single narrow transparent peak with a Q-factor of 1 × 105 in a broad stopband, induced by the phase shift of the S-junction at the spiral center. This phenomenon is analogous to the electromagnetically induced transparency (EIT) effect. The transparent peak can periodically shift in the stopband upon heating of the S-junction using a TiN-based heater on top. The peak transmittance and Q-factor are dependent on the reflectivity of the spiral IBG. The transparent peak can be completely eliminated under a certain tuning power, and the spiral IBG hence behaves as a bandstop optical filter. The bandwidth is 0.94 nm and the extinction ratio is as high as 43 dB. The stopband can also be shifted by heating the Bragg gratings using a separate TiN heater. The experimental results agree well with the modeling results based on the transfer matrix method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform

Zhi Zou, Linjie Zhou, Xinwan Li, and Jianping Chen
Opt. Express 23(16) 20784-20795 (2015)

Integrated Bragg gratings in spiral waveguides

Alexandre D. Simard, Yves Painchaud, and Sophie LaRochelle
Opt. Express 21(7) 8953-8963 (2013)

Spiral Bragg grating waveguides for TM mode silicon photonics

Zhitian Chen, Jonas Flueckiger, Xu Wang, Fan Zhang, Han Yun, Zeqin Lu, Michael Caverley, Yun Wang, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 23(19) 25295-25307 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  2. Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings Photosensitivity, Poling Glass Waveguides, BW2E.3, Optical Society of America (2012).
  3. X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290 (2011).
  4. K. Bédard, A. D. Simard, B. Filion, Y. Painchaud, L. A. Rusch, and S. LaRochelle, “Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s,” Opt. Express 24(3), 2413–2419 (2016).
    [Crossref] [PubMed]
  5. W. Zhang, N. Ehteshami, W. Liu, and J. Yao, “Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter,” Opt. Lett. 40(13), 3153–3156 (2015).
    [Crossref] [PubMed]
  6. M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-insulator modulators using a quarter-wave phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
    [Crossref]
  7. M. J. Strain, S. Thoms, D. S. MacIntyre, and M. Sorel, “Multi-wavelength filters in silicon using superposition sidewall Bragg grating devices,” Opt. Lett. 39(2), 413–416 (2014).
    [Crossref] [PubMed]
  8. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
    [Crossref] [PubMed]
  9. G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan, “Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings,” Opt. Express 21(24), 29223–29230 (2013).
    [Crossref] [PubMed]
  10. W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33(24), 5047–5054 (2015).
    [Crossref]
  11. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).
  12. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19(12), 11780–11785 (2011).
    [Crossref] [PubMed]
  13. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34(9), 1357–1359 (2009).
    [Crossref] [PubMed]
  14. A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29(24), 3693–3704 (2011).
    [Crossref]
  15. A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
    [Crossref] [PubMed]
  16. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication nonuniformity on chip-scale silicon photonic integrated circuits,”in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.
  17. A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
    [Crossref] [PubMed]
  18. A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
    [Crossref]
  19. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39(3), 701–703 (2014).
    [Crossref] [PubMed]
  20. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
    [Crossref] [PubMed]
  21. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
    [Crossref] [PubMed]
  22. Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23(19), 25295–25307 (2015).
    [Crossref] [PubMed]
  23. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett. 35(20), 3477–3479 (2010).
    [Crossref] [PubMed]
  24. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21(7), 8953–8963 (2013).
    [Crossref] [PubMed]
  25. X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4F.8.
    [Crossref]
  26. Z. Zou, L. Zhou, X. Li, and J. Chen, “60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform,” Opt. Express 23(16), 20784–20795 (2015).
    [Crossref] [PubMed]
  27. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in curved waveguides,” in the 23rd Annual Meeting of the Photonics Society Denver, USA, paper ThU3 (2010).
    [Crossref]
  28. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
    [Crossref] [PubMed]
  29. J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
    [Crossref]
  30. S. Harris, “Laser without inversion: Interference of lifetime-broadened,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  31. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  32. S. A. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, J. T. Kirk, K. C. Cheung, L. Chrostowski, and D. M. Ratner, “Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing,” SPIE Optics + Photonics, 9166 (2014).
  33. M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
    [Crossref] [PubMed]
  34. W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 26(23), 2383–2386 (2014).
    [Crossref]
  35. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  36. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  37. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
    [Crossref] [PubMed]

2016 (1)

2015 (6)

2014 (4)

2013 (5)

2012 (3)

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

2011 (4)

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19(12), 11780–11785 (2011).
[Crossref] [PubMed]

A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29(24), 3693–3704 (2011).
[Crossref]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290 (2011).

2010 (2)

2009 (2)

2008 (1)

1997 (1)

S. Harris, “Laser without inversion: Interference of lifetime-broadened,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1992 (1)

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Adibi, A.

Aimez, V.

Atabaki, A. H.

Ayache, M.

Ayotte, N.

Azaña, J.

Baehr-Jones, T.

Baghban, M. A.

Beaudin, G.

Bedard, S.

Bédard, K.

Belhadj, N.

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

Burla, M.

Caverley, M.

Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23(19), 25295–25307 (2015).
[Crossref] [PubMed]

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-insulator modulators using a quarter-wave phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

Chen, G. F. R.

Chen, J.

Chen, R.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

Chen, Z.

Chrostowski, L.

Cortés, L. R.

Donnelly, C.

Eftekhar, A. A.

Ehteshami, N.

Fainman, Y.

Fathpour, S.

Fernández-Ruiz, M. R.

Filion, B.

Flueckiger, J.

Grist, S.

Harris, S.

S. Harris, “Laser without inversion: Interference of lifetime-broadened,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Hochberg, M.

Hong, J.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Hu, T.

Huang, W.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Ikeda, K.

Jaeger, N. A.

Jaeger, N. A. F.

Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23(19), 25295–25307 (2015).
[Crossref] [PubMed]

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-insulator modulators using a quarter-wave phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290 (2011).

Jiang, G.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

Jiang, X.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

Jing, Z.

Khajavikhan, M.

Khan, S.

LaRochelle, S.

Li, M.

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
[Crossref] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, W.

W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 26(23), 2383–2386 (2014).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, X.

Lin, C.

Liu, W.

Liu, Y.

Lu, Z.

MacIntyre, D. S.

Makino, T.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Meriggi, L.

Murray, K.

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-insulator modulators using a quarter-wave phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

Murukeshan, V. M.

Nezhad, M. P.

Painchaud, Y.

Patel, D.

Plant, D. V.

Prabhathan, P.

Qiu, H.

Ramana, P. V.

Rusch, L. A.

Saperstein, R. E.

Shah Hosseini, E.

Shao, H.

Shi, W.

Simard, A. D.

Slutsky, B.

Sorel, M.

Strain, M. J.

Tan, D. T. H.

Thoms, S.

Vafaei, R.

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290 (2011).

Veerasubramanian, V.

Wang, M.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

Wang, T.

Wang, X.

Wang, Y.

Yang, J.

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

Yao, J.

W. Zhang, N. Ehteshami, W. Liu, and J. Yao, “Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter,” Opt. Lett. 40(13), 3153–3156 (2015).
[Crossref] [PubMed]

W. Zhang and J. Yao, “Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings,” J. Lightwave Technol. 33(24), 5047–5054 (2015).
[Crossref]

W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 26(23), 2383–2386 (2014).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Yegnanarayanan, S.

Yu, P.

Yun, H.

Zamek, S.

Zhang, F.

Zhang, W.

Zhou, L.

Zhou, Q.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

Zou, Z.

IEEE Photonics Technol. Lett. (5)

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290 (2011).

M. Caverley, X. Wang, K. Murray, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-insulator modulators using a quarter-wave phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 27(22), 2331–2334 (2015).
[Crossref]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–8 (2011).

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

W. Zhang, W. Li, and J. Yao, “Optical differentiator based on an integrated sidewall phase-shifted Bragg grating,” IEEE Photonics Technol. Lett. 26(23), 2383–2386 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (11)

G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan, “Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings,” Opt. Express 21(24), 29223–29230 (2013).
[Crossref] [PubMed]

K. Bédard, A. D. Simard, B. Filion, Y. Painchaud, L. A. Rusch, and S. LaRochelle, “Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s,” Opt. Express 24(3), 2413–2419 (2016).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
[Crossref] [PubMed]

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19(12), 11780–11785 (2011).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23(19), 25295–25307 (2015).
[Crossref] [PubMed]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
[Crossref] [PubMed]

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express 21(7), 8953–8963 (2013).
[Crossref] [PubMed]

Z. Zou, L. Zhou, X. Li, and J. Chen, “60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform,” Opt. Express 23(16), 20784–20795 (2015).
[Crossref] [PubMed]

P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009).
[Crossref] [PubMed]

Opt. Lett. (9)

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39(21), 6241–6244 (2014).
[Crossref] [PubMed]

A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
[Crossref] [PubMed]

S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett. 35(20), 3477–3479 (2010).
[Crossref] [PubMed]

W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39(3), 701–703 (2014).
[Crossref] [PubMed]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34(9), 1357–1359 (2009).
[Crossref] [PubMed]

W. Zhang, N. Ehteshami, W. Liu, and J. Yao, “Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter,” Opt. Lett. 40(13), 3153–3156 (2015).
[Crossref] [PubMed]

M. J. Strain, S. Thoms, D. S. MacIntyre, and M. Sorel, “Multi-wavelength filters in silicon using superposition sidewall Bragg grating devices,” Opt. Lett. 39(2), 413–416 (2014).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
[Crossref] [PubMed]

Phys. Today (1)

S. Harris, “Laser without inversion: Interference of lifetime-broadened,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Other (7)

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in curved waveguides,” in the 23rd Annual Meeting of the Photonics Society Denver, USA, paper ThU3 (2010).
[Crossref]

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4F.8.
[Crossref]

S. A. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, J. T. Kirk, K. C. Cheung, L. Chrostowski, and D. M. Ratner, “Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing,” SPIE Optics + Photonics, 9166 (2014).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings Photosensitivity, Poling Glass Waveguides, BW2E.3, Optical Society of America (2012).

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication nonuniformity on chip-scale silicon photonic integrated circuits,”in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.37.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the spiral IBG. R0 is the minimum bending radius. (b) Zoom-in view showing the grating details. Λ: grating period, Wcorr: corrugation width, g: waveguide spacing. (c) 3D perspective view of the active spiral IBG with TiN heaters on top for thermal tuning. (d) Cross section of the active spiral waveguide. (e) Microscopic image of a fabricated active spiral IBG.
Fig. 2
Fig. 2 (a) Effective refractive index change as a function of waveguide bending radius. (b) S-junction loss and packing efficiency (α) of the spiral grating as a function of the minimum bending radius R0.
Fig. 3
Fig. 3 Transmission spectra of three devices with (a) R0 = 20 μm, (b) R0 = 25 μm, and (c) R0 = 35 μm. The solid black lines represent the experimental spectra and the dashed red lines represent the modeled spectra. The insets show the magnified transparent peaks in the stopbands. The 3-dB bandwidths are labeled.
Fig. 4
Fig. 4 (a) Evolution of the transparent peak upon thermal tuning of the S-junction. The spectra are shifted vertically in purpose for better clarity. (b) Simulation results showing the similar evolution trend. (c) Shift of the stopband upon tuning of both the spiral waveguide and the center S-junction. (d) Extracted transparency peak wavelength as a function of the tuning power P1. (e) Extracted central wavelength of the stopband as a function of the total tuning power P1 + P2.
Fig. 5
Fig. 5 (a) Transmission spectra of device IV in response to the tuning power P1. (b) Q-factor as a function of the resonance offset from the stopband center wavelength. The inset shows magnified resonance peak when Q reaches the maximum.

Tables (1)

Tables Icon

Table 1 Design Parameters for Four Spiral IBGs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 Q = 1 Q C + 1 Q I

Metrics