Abstract

We present a new family of diffractive lenses, composite Thue-Morse zone plates (CTMZPs), formed by multiple orders of Thue-Morse zone plates (TMZPs). The typical structure of a CTMZP is a composite of two concentric TMZPs. The focusing properties of the CTMZPs with different parameters have been investigated both theoretically and experimentally. Compared with the TMZPs, the CTMZPs have higher performance in axial intensity and imaging resolution. The CTMZP beams are also found to possess the self-reconstruction property, and would be useful for three-dimensional optical tweezers, laser machining, and optical imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bifractal focusing and imaging properties of Thue–Morse Zone Plates

Vicente Ferrando, Fernando Giménez, Walter D. Furlan, and Juan A. Monsoriu
Opt. Express 23(15) 19846-19853 (2015)

Multifractal zone plates

Fernando Giménez, Walter D. Furlan, Arnau Calatayud, and Juan A. Monsoriu
J. Opt. Soc. Am. A 27(8) 1851-1855 (2010)

Multiple-plane image formation by Walsh zone plates

Federico Machado, Vicente Ferrando, Fernando Giménez, Walter D. Furlan, and Juan A. Monsoriu
Opt. Express 26(16) 21210-21218 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28(12), 971–973 (2003).
    [Crossref] [PubMed]
  2. R. A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
    [Crossref] [PubMed]
  3. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
    [Crossref] [PubMed]
  4. E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
    [Crossref]
  5. S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
    [Crossref]
  6. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345 (2005).
    [Crossref] [PubMed]
  7. S. B. Cheng, S. H. Tao, C. H. Zhou, and L. Wu, “Optical trapping of a dielectric-covered metallic microsphere,” J. Opt. 17(10), 105613 (2015).
    [Crossref]
  8. S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89(3), 031105 (2006).
    [Crossref]
  9. J. A. Monsoriu Serra, A. Calatayud Calatayud, L. Remón Martín, W. D. Furlan, G. Saavedra, and P. Andrés Bou, “Bifocal Fibonacci diffractive lenses,” IEEE Photonics J. 5(3), 34001061 (2013).
  10. V. Ferrando, F. Giménez, W. D. Furlan, and J. A. Monsoriu, “Bifractal focusing and imaging properties of Thue-Morse Zone Plates,” Opt. Express 23(15), 19846–19853 (2015).
    [Crossref] [PubMed]
  11. J. A. Monsoriu, W. D. Furlan, G. Saavedra, and F. Giménez, “Devil’s lenses,” Opt. Express 15(21), 13858–13864 (2007).
    [Crossref] [PubMed]
  12. W. D. Furlan, G. Saavedra, and J. A. Monsoriu, “White-light imaging with fractal zone plates,” Opt. Lett. 32(15), 2109–2111 (2007).
    [Crossref] [PubMed]
  13. F. Giménez, W. D. Furlan, A. Calatayud, and J. A. Monsoriu, “Multifractal zone plates,” J. Opt. Soc. Am. A 27(8), 1851–1855 (2010).
    [Crossref] [PubMed]
  14. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).
    [Crossref] [PubMed]
  15. Q. Cao and J. Jahns, “Modified Fresnel zone plates that produce sharp Gaussian focal spots,” J. Opt. Soc. Am. A 20(8), 1576–1581 (2003).
    [Crossref] [PubMed]
  16. M. J. Simpson and A. G. Michette, “Imaging properties of modified Fresnel zone plates,” Opt. Acta (Lond.) 31(4), 403–413 (1984).
    [Crossref]
  17. E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13(6), 2529–2534 (1995).
    [Crossref]
  18. E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
    [Crossref]
  19. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
    [Crossref] [PubMed]
  20. S. Tao and W. Yu, “Beam shaping of complex amplitude with separate constraints on the output beam,” Opt. Express 23(2), 1052–1062 (2015).
    [Crossref] [PubMed]
  21. S. H. Tao, B. C. Yang, H. Xia, and W. X. Yu, “Tailorable three-dimensional distribution of laser foci based on customized fractal zone plates,” Laser Phys. Lett. 10(3), 035003 (2013).
    [Crossref]
  22. S. H. Tao and X. Yuan, “Self-reconstruction property of fractional Bessel beams,” J. Opt. Soc. Am. A 21(7), 1192–1197 (2004).
    [Crossref] [PubMed]
  23. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
    [Crossref]
  24. X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
    [Crossref]
  25. X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
    [Crossref] [PubMed]
  26. J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
    [Crossref] [PubMed]
  27. Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
    [Crossref] [PubMed]
  28. A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.-L. Coutaz, and M. Sypek, “Diffractive paper lens for terahertz optics,” Opt. Lett. 37(20), 4320–4322 (2012).
    [Crossref] [PubMed]

2015 (3)

2014 (1)

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

2013 (2)

S. H. Tao, B. C. Yang, H. Xia, and W. X. Yu, “Tailorable three-dimensional distribution of laser foci based on customized fractal zone plates,” Laser Phys. Lett. 10(3), 035003 (2013).
[Crossref]

J. A. Monsoriu Serra, A. Calatayud Calatayud, L. Remón Martín, W. D. Furlan, G. Saavedra, and P. Andrés Bou, “Bifocal Fibonacci diffractive lenses,” IEEE Photonics J. 5(3), 34001061 (2013).

2012 (2)

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.-L. Coutaz, and M. Sypek, “Diffractive paper lens for terahertz optics,” Opt. Lett. 37(20), 4320–4322 (2012).
[Crossref] [PubMed]

2011 (1)

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

2010 (1)

2007 (2)

2006 (2)

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89(3), 031105 (2006).
[Crossref]

2005 (2)

2004 (1)

2003 (3)

2002 (1)

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

2001 (2)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

2000 (1)

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

1999 (2)

R. A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
[Crossref] [PubMed]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

1995 (1)

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13(6), 2529–2534 (1995).
[Crossref]

1984 (1)

M. J. Simpson and A. G. Michette, “Imaging properties of modified Fresnel zone plates,” Opt. Acta (Lond.) 31(4), 403–413 (1984).
[Crossref]

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Andersen, G.

Anderson, E. H.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13(6), 2529–2534 (1995).
[Crossref]

Andrés Bou, P.

J. A. Monsoriu Serra, A. Calatayud Calatayud, L. Remón Martín, W. D. Furlan, G. Saavedra, and P. Andrés Bou, “Bifocal Fibonacci diffractive lenses,” IEEE Photonics J. 5(3), 34001061 (2013).

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Attwood, D.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Barbastathis, G.

Barrett, R.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Boegli, V.

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13(6), 2529–2534 (1995).
[Crossref]

Bomba, J.

Bu, J.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Bulaevskii, L. N.

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

Burge, R. E.

S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89(3), 031105 (2006).
[Crossref]

Cabrini, S.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Calatayud, A.

Calatayud Calatayud, A.

J. A. Monsoriu Serra, A. Calatayud Calatayud, L. Remón Martín, W. D. Furlan, G. Saavedra, and P. Andrés Bou, “Bifocal Fibonacci diffractive lenses,” IEEE Photonics J. 5(3), 34001061 (2013).

Cao, Q.

Chao, W.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Chen, J.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Cheng, S. B.

S. B. Cheng, S. H. Tao, C. H. Zhou, and L. Wu, “Optical trapping of a dielectric-covered metallic microsphere,” J. Opt. 17(10), 105613 (2015).
[Crossref]

Coutaz, J.-L.

Czerwinski, A.

Davison, J. A.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

Denbeaux, G.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Dholakia, K.

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Di Fabrizio, E.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Ferrando, V.

Furlan, W. D.

Gao, B. Z.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Gao, K.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Garcés-Chávez, V.

Garet, F.

Ge, X.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Gentili, M.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Gil, D.

Giménez, F.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Harteneck, B.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Hong, Y.

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Hong, Y. L.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

Hundley, M. F.

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

Hyde, R. A.

Jahns, J.

Johnson, L.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Kaulich, B.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Koshelev, A. E.

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

Lin, J.

S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89(3), 031105 (2006).
[Crossref]

Lucero, A.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Makowski, M.

Maley, M. P.

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

McGloin, D.

Menon, R.

Michette, A. G.

M. J. Simpson and A. G. Michette, “Imaging properties of modified Fresnel zone plates,” Opt. Acta (Lond.) 31(4), 403–413 (1984).
[Crossref]

Monsoriu, J. A.

Monsoriu Serra, J. A.

J. A. Monsoriu Serra, A. Calatayud Calatayud, L. Remón Martín, W. D. Furlan, G. Saavedra, and P. Andrés Bou, “Bifocal Fibonacci diffractive lenses,” IEEE Photonics J. 5(3), 34001061 (2013).

Muray, L. P.

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13(6), 2529–2534 (1995).
[Crossref]

Olynick, D. L.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Pan, Z.

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Remón Martín, L.

J. A. Monsoriu Serra, A. Calatayud Calatayud, L. Remón Martín, W. D. Furlan, G. Saavedra, and P. Andrés Bou, “Bifocal Fibonacci diffractive lenses,” IEEE Photonics J. 5(3), 34001061 (2013).

Romanato, F.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Saavedra, G.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Siemion, A.

Simpson, M. J.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

M. J. Simpson and A. G. Michette, “Imaging properties of modified Fresnel zone plates,” Opt. Acta (Lond.) 31(4), 403–413 (1984).
[Crossref]

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

Smith, H. I.

Susini, J.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Suszek, J.

Sypek, M.

Tao, S.

Tao, S. H.

S. B. Cheng, S. H. Tao, C. H. Zhou, and L. Wu, “Optical trapping of a dielectric-covered metallic microsphere,” J. Opt. 17(10), 105613 (2015).
[Crossref]

S. H. Tao, B. C. Yang, H. Xia, and W. X. Yu, “Tailorable three-dimensional distribution of laser foci based on customized fractal zone plates,” Laser Phys. Lett. 10(3), 035003 (2013).
[Crossref]

S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89(3), 031105 (2006).
[Crossref]

S. H. Tao and X. Yuan, “Self-reconstruction property of fractional Bessel beams,” J. Opt. Soc. Am. A 21(7), 1192–1197 (2004).
[Crossref] [PubMed]

Taylor, A. J.

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

Veklerov, E.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Wang, D.

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Wang, D. J.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

Wang, J. G.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Wang, M. W.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Wang, R.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Wang, S. H.

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

Wang, Z.

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Wang, Z. L.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

Wu, L.

S. B. Cheng, S. H. Tao, C. H. Zhou, and L. Wu, “Optical trapping of a dielectric-covered metallic microsphere,” J. Opt. 17(10), 105613 (2015).
[Crossref]

Wu, Z.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Wu, Z. Y.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

Xia, H.

S. H. Tao, B. C. Yang, H. Xia, and W. X. Yu, “Tailorable three-dimensional distribution of laser foci based on customized fractal zone plates,” Laser Phys. Lett. 10(3), 035003 (2013).
[Crossref]

Yang, B. C.

S. H. Tao, B. C. Yang, H. Xia, and W. X. Yu, “Tailorable three-dimensional distribution of laser foci based on customized fractal zone plates,” Laser Phys. Lett. 10(3), 035003 (2013).
[Crossref]

Yu, W.

Yu, W. X.

S. H. Tao, B. C. Yang, H. Xia, and W. X. Yu, “Tailorable three-dimensional distribution of laser foci based on customized fractal zone plates,” Laser Phys. Lett. 10(3), 035003 (2013).
[Crossref]

Yuan, X.

Yuan, X. C.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Yuan, X.-C.

S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89(3), 031105 (2006).
[Crossref]

Zhang, K.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Zhang, Q. Q.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Zhang, X. C.

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

Zhou, C. H.

S. B. Cheng, S. H. Tao, C. H. Zhou, and L. Wu, “Optical trapping of a dielectric-covered metallic microsphere,” J. Opt. 17(10), 105613 (2015).
[Crossref]

Zhu, P.

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Zhu, P. P.

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

Zhu, S. W.

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

X. Ge, Z. Wang, K. Gao, D. Wang, Z. Wu, J. Chen, Z. Pan, K. Zhang, Y. Hong, P. Zhu, and Z. Wu, “Use of fractal zone plates for transmission X-ray microscopy,” Anal. Bioanal. Chem. 404(5), 1303–1309 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plate,” Appl. Phys. Lett. 89(3), 031105 (2006).
[Crossref]

IEEE Photonics J. (1)

J. A. Monsoriu Serra, A. Calatayud Calatayud, L. Remón Martín, W. D. Furlan, G. Saavedra, and P. Andrés Bou, “Bifocal Fibonacci diffractive lenses,” IEEE Photonics J. 5(3), 34001061 (2013).

J. Cataract Refract. Surg. (1)

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

J. Opt. (2)

Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13(5), 055301 (2011).
[Crossref] [PubMed]

S. B. Cheng, S. H. Tao, C. H. Zhou, and L. Wu, “Optical trapping of a dielectric-covered metallic microsphere,” J. Opt. 17(10), 105613 (2015).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Vac. Sci. Technol. B (2)

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13(6), 2529–2534 (1995).
[Crossref]

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18(6), 2970–2975 (2000).
[Crossref]

Laser Phys. Lett. (1)

S. H. Tao, B. C. Yang, H. Xia, and W. X. Yu, “Tailorable three-dimensional distribution of laser foci based on customized fractal zone plates,” Laser Phys. Lett. 10(3), 035003 (2013).
[Crossref]

Nature (2)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref] [PubMed]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999).
[Crossref]

Opt. Acta (Lond.) (1)

M. J. Simpson and A. G. Michette, “Imaging properties of modified Fresnel zone plates,” Opt. Acta (Lond.) 31(4), 403–413 (1984).
[Crossref]

Opt. Commun. (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Photon. News (1)

S. H. Wang, X. C. Zhang, M. P. Maley, M. F. Hundley, L. N. Bulaevskii, A. E. Koshelev, and A. J. Taylor, “Terahertz tomographic imaging with a Fresnel lens,” Opt. Photon. News 13(12), 58 (2002).
[Crossref]

Radiat. Phys. Chem. (1)

X. Ge, Z. L. Wang, K. Gao, D. J. Wang, Z. Wu, J. Chen, K. Zhang, Y. L. Hong, P. P. Zhu, and Z. Y. Wu, “Effects of the condenser fractal zone plate in a transmission X-ray microscope,” Radiat. Phys. Chem. 95, 424–427 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Geometrical structure of the TM sequences up to order S = 4. (b) CTMZP of order M = (4, 4). The region inside the dashed circle is a TMZP of order S = 4 with radius r = a/2.
Fig. 2
Fig. 2 Normalized axial irradiances of (a) CTMZP of M = (4, 0), (b) CTMZP of M = (0, 4), and (c) CTMZP of M = (4, 4). The CTMZPs of orders M = (4, 0) and M = (0, 4) are shown as insets in (a) and (b). The CTMZP of M = (4, 4) is a composite of the CTMZPs of M = (4, 0) and M = (0, 4).
Fig. 3
Fig. 3 (a) Normalized axial irradiances and (b) the corresponding phase distributions of CTMZPs of orders M = (4, 2), (4, 3), (4, 4), and (4, 5), respectively. (c) Self-similarity of the axial irradiances generated by the two CTMZPs of orders M = (4, 4) and M = (3, 3).
Fig. 4
Fig. 4 Intensity distributions of the obstructed beam at propagation distances of (a) z = 271.1 mm, (b) z = 310 mm, (c) z = 321.5 mm, and (d) z = 620 mm, respectively. Intensity distributions of the unobstructed beam at propagation distances of (e) z = 271.1 mm, (f) z = 310 mm, (g) z = 321.5 mm, and (h) z = 620 mm, respectively.
Fig. 5
Fig. 5 Sampled intensity cross-sections of (a) the obstructed beam and (b) the unobstructed beams versus the propagating distances. In (a) the obstacle is placed in the center of the 21st sampled intensity cross-section at z = 262 mm and is highlighted with a dashed box.
Fig. 6
Fig. 6 (a) and (b) are the simulation results of the TMZP of S = 4 at the propagation distances of f1 = 320 mm and f2 = 660 mm, respectively. (c) and (d) are the corresponding experimental results of the TMZP. (e) and (f) are the simulation results of the CTMZP of M = (4, 5) at the propagation distances of f1 = 320 mm and f2 = 660 mm, respectively. (g) and (h) are the corresponding experimental results of the CTMZP. (i) and (j) are the axial irradiances of TMZP of S = 4 and the CTMZP of M = (4, 5) from z = 217 mm to z = 1516 mm around the main foci, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

q(ζ)= j=1 2 S t S,j rect[ ζ(j1/2) d S d S ]
E a =iFT[FT( T a )H], E p =iFT[FT( T p )H]
H(x,y)=exp[ i2πz 1 λ 2 ( x d ) 2 ( y d ) 2 ]

Metrics