Abstract

We demonstrate an integrated optical probe including an on-chip microlens for a common-path swept-source optical coherence tomography system. This common-path design uses the end facet of the silicon oxynitride waveguide as the reference plane, thus eliminating the need of a space-consuming and dispersive on-chip loop reference arm, thereby obviating the need for dispersion compensation. The on-chip micro-ball lens eliminates the need of external optical elements for coupling the light between the chip and the sample. The use of this lens leads to a signal enhancement up to 37 dB compared to the chip without a lens. The light source, the common-path arm and the detector are connected by a symmetric Y junction having a wavelength independent splitting ratio (50/50) over a much larger bandwidth than can be obtained with a directional coupler. The signal-to-noise ratio of the system was measured to be 71 dB with 2.6 mW of power on a mirror sample at a distance of 0.3 mm from the waveguide end facet. Cross-sectional OCT images of a layered optical phantom sample are demonstrated with our system. A method, based on an extended Fourier-domain OCT model, for suppressing ghost images caused by additional parasitic reference planes is experimentally demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Common-path optical coherence tomography using a microelectromechanical-system-based endoscopic probe

Donglin Wang, Can Duan, Xiaoyang Zhang, Zhao Yun, Antonio Pozzi, and Huikai Xie
Appl. Opt. 55(25) 6930-6935 (2016)

In-fiber common-path optical coherence tomography using a conical-tip fiber

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia
Opt. Express 17(4) 2375-2384 (2009)

Double common-path interferometer for flexible optical probe of optical coherence tomography

Jae Seok Park, Zhongping Chen, Myung Yung Jeong, and Chang-Seok Kim
Opt. Express 20(2) 1102-1112 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer-Verlag, 2008).
  3. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  4. M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
    [Crossref]
  5. G. Song and K. Harding, “OCT for industrial applications,” Proc. SPIE 8563, 85630N (2012).
    [Crossref]
  6. W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
    [Crossref]
  7. W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
    [Crossref]
  8. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [Crossref]
  9. A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
    [Crossref] [PubMed]
  10. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  11. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
    [Crossref] [PubMed]
  12. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37(23), 4820–4822 (2012).
    [Crossref] [PubMed]
  13. G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, and R. Baets, “Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography,” Biomed. Opt. Express 5(4), 1050–1061 (2014).
    [Crossref] [PubMed]
  14. G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Opt. Lett. 39(17), 5228–5231 (2014).
    [Crossref] [PubMed]
  15. B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
    [Crossref] [PubMed]
  16. Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
    [Crossref] [PubMed]
  17. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
    [Crossref]
  18. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42(34), 6953–6958 (2003).
    [Crossref] [PubMed]
  19. M. Zhao, Y. Huang, and J. U. Kang, “Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging,” Opt. Lett. 37(23), 4835–4837 (2012).
    [Crossref] [PubMed]
  20. L. Chang, M. Dijkstra, N. Ismail, M. Pollnau, R. M. de Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Waveguide-coupled micro-ball lens array suitable for mass fabrication,” Opt. Express 23(17), 22414–22423 (2015).
    [Crossref] [PubMed]
  21. K. Wörhoff, P. V. Lambek, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol. 17(8), 1401–1407 (1999).
    [Crossref]
  22. W.-P. Huang and C. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
    [Crossref]
  23. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(4), 042312 (2013).
    [Crossref] [PubMed]
  24. B. D. Goldberg, B. J. Vakoc, W. Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
    [Crossref] [PubMed]
  25. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  26. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref] [PubMed]
  27. B. I. Akca, “Spectral-domain optical coherence tomography on a silicon chip,” Ph.D. thesis (University of Twente, Enschede, The Netherlands, 2012).
  28. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
    [Crossref] [PubMed]
  29. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
    [Crossref] [PubMed]
  30. P. J. Shaw and D. J. Rawlins, “The point-spread function of a confocal microscope - its measurement and use in deconvolution of 3-D data,” J. Microsc. 163(2), 151–165 (1991).
    [Crossref]
  31. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972).
    [Crossref]
  32. J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
    [Crossref]
  33. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
    [Crossref]
  34. S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

2013 (4)

2012 (4)

2011 (1)

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

2010 (2)

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[Crossref] [PubMed]

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
[Crossref] [PubMed]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

2006 (1)

M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]

2005 (3)

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

2003 (4)

2002 (1)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

1999 (1)

1993 (1)

W.-P. Huang and C. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

P. J. Shaw and D. J. Rawlins, “The point-spread function of a confocal microscope - its measurement and use in deconvolution of 3-D data,” J. Microsc. 163(2), 151–165 (1991).
[Crossref]

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

1972 (1)

Akca, B. I.

Alex, A.

Avanaki, M. R. N.

Azfar, T.

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

Baets, R.

Beeker, W.

Bouma, B.

Bouma, B. E.

Bowers, J. E.

Calogero, D.

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

Chang, L.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

Choma, M.

de Boer, J.

de Boer, J. F.

de Bruin, D. M.

de Ridder, R. M.

Di Pasquale, F.

Dijkstra, M.

Doerr, C. R.

Drexler, W.

Driessen, A.

Dufour, M.

M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]

Fercher, A.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Freilich, M. I.

Fried, N. M.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gauthier, B.

M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]

Goldberg, B. D.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Harding, K.

G. Song and K. Harding, “OCT for industrial applications,” Proc. SPIE 8563, 85630N (2012).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heideman, R. G.

Hitzenberger, C.

Hoekman, M.

Hojjatoleslami, S. A.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, W.-P.

W.-P. Huang and C. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

Huang, Y.

M. Zhao, Y. Huang, and J. U. Kang, “Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging,” Opt. Lett. 37(23), 4835–4837 (2012).
[Crossref] [PubMed]

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

Ilev, I. K.

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

Ismail, N.

Izatt, J.

James, R. H.

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

Kalkman, J.

Kane, D. J.

Kang, J. U.

M. Zhao, Y. Huang, and J. U. Kang, “Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging,” Opt. Lett. 37(23), 4835–4837 (2012).
[Crossref] [PubMed]

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

Kanger, J. S.

Kerbage, C.

Koo, A.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

Lai, K.

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

Lambek, P. V.

Lamouche, G.

M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]

Lau, S. H.

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

Leinse, A.

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

Monchalin, J.-P.

M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]

Murtagh, F.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Nguyen, V. D.

Oh, W. Y.

Padioleau, C.

M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]

Pantin, E.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Park, B.

Peterson, K. A.

Pintus, P.

Podoleanu, A. G.

Pollnau, M.

Považay, B.

Pravdivtsev, A.

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rawlins, D. J.

P. J. Shaw and D. J. Rawlins, “The point-spread function of a confocal microscope - its measurement and use in deconvolution of 3-D data,” J. Microsc. 163(2), 151–165 (1991).
[Crossref]

Richardson, W. H.

Sarunic, M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sengo, G.

Sharma, U.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

Shaw, P. J.

P. J. Shaw and D. J. Rawlins, “The point-spread function of a confocal microscope - its measurement and use in deconvolution of 3-D data,” J. Microsc. 163(2), 151–165 (1991).
[Crossref]

Song, G.

G. Song and K. Harding, “OCT for industrial applications,” Proc. SPIE 8563, 85630N (2012).
[Crossref]

Souchkov, V.

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

Starck, J. L.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Subramaniam, V.

Suter, M. J.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

Vakhtin, A. B.

Vakoc, B. J.

Van, P.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

van Leeuwen, T. G.

Walecki, W. J.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

Waxman, S.

Weiss, N.

Wojtkowski, M.

Wong, T.

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

Wood, W. R.

Wörhoff, K.

Xu, C.

W.-P. Huang and C. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

Yang, C.

Yun, S.

Yurtsever, G.

Zabihian, B.

Zhang, K.

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

Zhao, M.

Appl. Opt. (3)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

W.-P. Huang and C. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
[Crossref]

J. Biomed. Opt. (1)

Y. Huang, K. Zhang, J. U. Kang, D. Calogero, R. H. James, and I. K. Ilev, “Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement,” J. Biomed. Opt. 16(12), 126005 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Microsc. (1)

P. J. Shaw and D. J. Rawlins, “The point-spread function of a confocal microscope - its measurement and use in deconvolution of 3-D data,” J. Microsc. 163(2), 151–165 (1991).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (9)

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
[Crossref] [PubMed]

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
[Crossref] [PubMed]

L. Chang, M. Dijkstra, N. Ismail, M. Pollnau, R. M. de Ridder, K. Wörhoff, V. Subramaniam, and J. S. Kanger, “Waveguide-coupled micro-ball lens array suitable for mass fabrication,” Opt. Express 23(17), 22414–22423 (2015).
[Crossref] [PubMed]

B. D. Goldberg, B. J. Vakoc, W. Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[Crossref] [PubMed]

B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(4), 042312 (2013).
[Crossref] [PubMed]

Phys. Status Solidi, C Conf. Crit. Rev. (1)

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. H. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Status Solidi, C Conf. Crit. Rev. 2(3), 984–989 (2005).
[Crossref]

Proc. SPIE (3)

M. Dufour, G. Lamouche, B. Gauthier, C. Padioleau, and J.-P. Monchalin, “Inspection of hard-to-reach industrial parts using small-diameter probes,” Proc. SPIE 6343, 63431Z (2006).
[Crossref]

G. Song and K. Harding, “OCT for industrial applications,” Proc. SPIE 8563, 85630N (2012).
[Crossref]

W. J. Walecki, K. Lai, A. Pravdivtsev, V. Souchkov, P. Van, T. Azfar, T. Wong, S. H. Lau, and A. Koo, “Low-coherence interferometric absolute distance gauge for study of MEMS structures,” Proc. SPIE 5716, 182–188 (2005).
[Crossref]

Publ. Astron. Soc. Pac. (1)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Z. Med. Phys. (1)

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

Other (2)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer-Verlag, 2008).

B. I. Akca, “Spectral-domain optical coherence tomography on a silicon chip,” Ph.D. thesis (University of Twente, Enschede, The Netherlands, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of the SS-OCT experimental setup. (a) Light emitted by the swept laser source travels through an optical isolator (OI) and a fiber array unit (FAU) to the chip. The blue lines indicate optical fibers and the yellow lines represent the waveguides on the chip. (b) Microscope image of the end part of the chip showing the channel waveguide and the micro-ball lens. (c) Schematic of the side view of the structure in Fig. 1(b). The end facet is angled at 86 degrees (θ) with respect to the Si substrate plane.
Fig. 2
Fig. 2 Characterization of the chip-based OCT system. (a) A-scan results of a mirror sample measured with and without a micro-ball lens. The signal measured without the lens is multiplied by 28 to obtain equal peak magnitude for the cases with and without lens to enable easy comparison. The insets show a zoom in to the main signal peak and the noise floor, respectively. (b) Signal roll-off measured with and without a micro-ball lens. The peak position of each A-scan is marked with a red dot for the case with a lens and a black square for the case without lens. The peak magnitude is given in dB units, where 0 dB corresponds to the value 1 of the arbitrary unit used in Fig. 2(a). The dashed black curve is a calculated signal roll-off based on the finite spectral resolution of the system. The red dashed lines indicate the 6 dB roll-off optical path length for each curve. (c) Measured noise as a function of optical path length. The measurements are categorized into two groups, namely sample power dominated and reference power dominated. (d) SNR roll-off comparison between chips with and without a lens. The red dashed lines indicate the 6 dB roll-off optical path length of each curve. The SNR roll-off curve in the case with a lens is rather flat, leads to a large uncertainty ( ± 0.5 mm) in the 6 dB roll-off range.
Fig. 3
Fig. 3 (a) A zoomed-in view of an A-scan result of a mirror sample. This plot shows the effect of multiple references on a mirror sample (black curve) and its deconvolved solution (red curve). (b) and (c) Zoomed in cross-sectional images of a phantom sample before and after deconvolution. (d) and (e) The deconvolved phantom images at different distances from the chip.

Tables (2)

Tables Icon

Table 1 Measured Reflected Reference Power, Reflected Sample Power and Power Incident on the Sample with and without a Micro-ball Lens

Tables Icon

Table 2 Comparison of Measured A-scan Parameters between the Chip System and a Fiber System

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

A magnitude Mρ P R P S τ i ,
σ measured = σ read 2 + σ shot 2 ( P )+ σ RIN 2 ( P ) ,
i D,image (z)=G H PSF ,
E i =s( k ) e i( kzωt ) ,
E S = E i t LS t SD e ik z D n=1 N ( r Sn e 2ik z Sn ) ,
E R = E i t LR t RD e ik z D j=1 J ( r Rj e 2ik z Rj ) ,
I D ( k )=ρ(k) c ε 0 A | E R + E S | 2 .
I D ( k )=ρ(k)S( k )[ T LR T RD ( R R1 + R R2 +...)+ T LS T SD ( R S1 + R S2 + ) ] 'Direct current (DC) terms' +ρ(k)S( k ) T LR T RD T LS T SD j=1 J n=1 N { R Rj R Sn [ e i2k( z Sn z Rj ) + e i2k( z Sn z Rj ) ] } 'Cross-correlation terms' + 1 2 ρ(k)S( k ) T LR T RD j=1 jh J h=1 J { R Rj R Rh [ e i2k( z Rj z Rh ) + e i2k( z Rj z Rh ) ] } 'Auto-correlation terms of reference' + 1 2 ρ(k)S( k ) T LS T SD n=1 nm N m=1 N { R Sn R Sm [ e i2k( z Sn z Sm ) + e i2k( z Sn z Sm ) ] } 'Auto-correlation terms of sample'.
S( k )= 1 2 c ε 0 A | s( k ) | 2
T LR = | t LR | 2 , T RD = | t RD | 2 , T LS = | t LS | 2 , T SD = | t SD | 2 , R Rj = | r Rj | 2 , and R Sn = | r Sn | 2
z R2 = z R1 +Δ z 21 , z R3 = z R1 +Δ z 31 ,...,
I D,cross (k)=ρ(k)S( k )[ c SR1 ( k )+ c SR1 ( k ) * ] 'from reference plane 1' +ρ(k)S( k )[ R R2 R R1 c SR1 ( k ) e i2kΔ z 21 + R R2 R R1 c SR1 ( k ) * e i2kΔ z 21 ] 'from reference plane 2' +ρ(k)S( k )[ R R3 R R1 c SR1 ( k ) e i2kΔ z 31 + R R3 R R1 c SR1 ( k ) * e i2kΔ z 31 ] 'from reference plane 3',
c SR1 ( k )= T LR T RD T LS T SD n=1 N { R R1 R Sn e i2k( z Sn z R1 ) }.
i D,cross,R1,image (z)=F[ ρ(k)S( k ) c SR1 ( k ) ]=F[ ρ(k)S( k ) ]F[ c SR1 ( k ) ],
i D,cross,R1,artifact (z)=F[ ρ(k)S( k ) c SR1 ( k ) ]=F[ ρ(k)S( k ) ]F[ c SR1 ( k ) ],
I D,cross (k)=ρ(k)S( k )[ c SR1 ( k )α( k )+ c SR1 ( k ) * α ( k ) * ],
α(k)=( 1+ j=2 J R Rj R R1 e i2kΔ z j1 )
i D,cross,image (z)= i D,cross,R1,image (z)F[ α( k ) ] =F[ c SR1 ( k ) ]F[ ρ(k)S( k ) ]F[ α( k ) ],
H PSF =F[ ρ(k)S( k ) ]F[ α( k ) ],
H PSF = i D,cross,image (z)

Metrics