Abstract

An ultra-broadband supercontinuum was generated in a short piece of step-index germania-core fiber using a fiber laser with a peak power of 4.4 kW. The pure germania core made this fiber capable of propagating light towards the desirable mid-infrared region. The spectral broadening characteristics towards the mid-infrared region under different lengths of germania-core fiber were investigated using pump pulses of 4.4 kW and 1.1 ns at 1550 nm. The large nonlinear refractive index of germania and the small core size of germania-core fiber produced a nonlinear coefficient as high as 11.8 (W km)−1 at 1550 nm, which was beneficial for supercontinuum generation. The pump wavelength was located in the anomalous dispersion regime and close to the zero dispersion wavelength of this germania-core fiber, 1.426 μm. Eventually, an ultra-broadband supercontinuum source with a spectrum spanning from 0.6 to 3.2 μm was obtained and had a total output power of 350 mW at an optimized germania-core fiber length of 0.8 m. This work is the first demonstration, to the best of our knowledge, of a germania-core fiber-based ultra-broadband supercontinuum source that spans from the visible region to the mid-infrared region.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
30  W monolithic 2–3  μm supercontinuum laser

Ke Yin, Bin Zhang, Linyong Yang, and Jing Hou
Photon. Res. 6(2) 123-126 (2018)

Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source

Jinmei Yao, Bin Zhang, Ke Yin, Linyong Yang, Jing Hou, and Qisheng Lu
Opt. Express 24(13) 15093-15100 (2016)

Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3  μm

Linyong Yang, Bin Zhang, Ke Yin, Tianyi Wu, Yijun Zhao, and Jing Hou
Photon. Res. 6(5) 417-421 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
    [Crossref]
  2. N. Cezard, A. Dobroc, G. Canat, M. Duhant, W. Renard, C. Alhenc-Gelas, S. Lefebvre, and J. Fade, “Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture,” in SPIE Remote Sensing, (International Society for Optics and Photonics, 2011), 81820V.
  3. A. B. Seddon, “Potential for using mid-infrared light for non-invasive, early-detection of skin cancers in vivo,” in 2013), in SPIE BiOS, (International Society for Optics and Photonics, 2013), 85760V.
  4. A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
    [Crossref]
  5. A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49(11), 2072–2078 (2010).
    [Crossref] [PubMed]
  6. L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: an environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278 (2005).
    [Crossref]
  7. H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 27–38.
    [Crossref]
  8. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-state Mid-infrared Laser Sources (Springer, 2003), 458–529.
  9. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  10. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [Crossref] [PubMed]
  11. J. Swiderski, “High-power mid-infrared supercontinuum sources: Current status and future perspectives,” Prog. Quantum Electron. 38(5), 189–235 (2014).
    [Crossref]
  12. J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
    [Crossref]
  13. C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
    [Crossref]
  14. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
    [Crossref] [PubMed]
  15. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” in SPIE Security and Defence, (International Society for Optics and Photonics, 2013), 889808.
  16. R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [Crossref]
  17. K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41(5), 946–949 (2016).
    [Crossref] [PubMed]
  18. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1), 68–80 (1993).
    [Crossref]
  19. E. M. Dianov and V. M. Mashinsky, “Germania-Based Core Optical Fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  20. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32(13), 1848–1850 (2007).
    [Crossref] [PubMed]
  21. V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
    [Crossref]
  22. M. Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
    [Crossref] [PubMed]
  23. V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7-3.2 μm range,” in Proc. of SPIEVol. 896189611C–2, 2014), 89611C.
    [Crossref]
  24. S. Sakaguchi and S. Todoroki, “Optical properties of GeO2 glass and optical fibers,” Appl. Opt. 36(27), 6809–6814 (1997).
    [Crossref] [PubMed]
  25. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20(22), 2279–2281 (1995).
    [Crossref] [PubMed]
  26. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  27. J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38(21), 4518–4521 (2013).
    [Crossref] [PubMed]
  28. “"HITRAN” 2012 database, http://vpl.astro.washington.edu/spectra/h2opnnlimagesmicrons.htm .
  29. “"HITRAN” database, http://hitran.iao.ru/ .

2016 (1)

2015 (1)

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

2014 (3)

J. Swiderski, “High-power mid-infrared supercontinuum sources: Current status and future perspectives,” Prog. Quantum Electron. 38(5), 189–235 (2014).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

2010 (1)

2008 (1)

2007 (1)

2005 (2)

E. M. Dianov and V. M. Mashinsky, “Germania-Based Core Optical Fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: an environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278 (2005).
[Crossref]

2003 (1)

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

1997 (1)

1995 (1)

1993 (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1), 68–80 (1993).
[Crossref]

1984 (1)

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Bednyakova, A. E.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

Bekman, H. T.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 27–38.
[Crossref]

Bonaccorso, F.

Bourayou, R.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Chapman, B. H.

Chen, S.

Couderc, V.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Cumberland, B. A.

Dianov, E. M.

Fedoruk, M. P.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

Ferrari, A. C.

Flahaut, E.

Fleming, J. W.

Freeman, M. J.

C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
[Crossref]

Galvanauskas, A.

C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
[Crossref]

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Hasan, T.

Hou, J.

Huss, G.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Islam, M. N.

C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
[Crossref]

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1), 68–80 (1993).
[Crossref]

Jiang, Z.

Kamynin, V. A.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

Kasparian, J.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Kato, T.

Kelleher, E. J.

Knight, J. C.

Kumar, M.

C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
[Crossref]

Kurkov, A. S.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

Labruyère, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Lægsgaard, J.

Lehmann, H.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Leproux, P.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Mashinsky, V. M.

Mathieu, P.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Medhurst, L. J.

L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: an environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278 (2005).
[Crossref]

Medvedkov, O. I.

Méjean, G.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Michalska, M.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Milana, S.

Mukherjee, A.

Nguyen, V.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Nishchev, K. N.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

Nishimura, M.

Patel, C. K. N.

Popa, D.

Popov, S. V.

Pureza, P.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Rodriguez, M.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Runcorn, T. H.

Sakaguchi, S.

Salmon, E.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Sauerbrey, R.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Schleijpen, R.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 27–38.
[Crossref]

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Stone, J. M.

Suetsugu, Y.

Sun, Z.

Swiderski, J.

J. Swiderski, “High-power mid-infrared supercontinuum sources: Current status and future perspectives,” Prog. Quantum Electron. 38(5), 189–235 (2014).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Taylor, J. R.

Terry, F. L.

C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
[Crossref]

Théberge, F.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Todoroki, S.

Tonello, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Tu, H.

Van Den Heuvel, J.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 27–38.
[Crossref]

Van Putten, F.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 27–38.
[Crossref]

Vasiliev, S. A.

Vincent, D.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

Volkov, I. A.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

Von der Porten, S.

Wolf, J.-P.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Wöste, L.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Xia, C.

C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
[Crossref]

Xue, G.

Yang, L.

Yang, W.

Yao, J.

Yin, K.

Yu, J.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

Zhang, B.

Zhang, M.

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1), 68–80 (1993).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77(2–3), 357–359 (2003).
[Crossref]

J. Chem. Educ. (1)

L. J. Medhurst, “FTIR determination of pollutants in automobile exhaust: an environmental chemistry experiment comparing cold-start and warm-engine conditions,” J. Chem. Educ. 82(2), 278 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1), 68–80 (1993).
[Crossref]

Laser Phys. Lett. (2)

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11(1), 015106 (2014).
[Crossref]

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12(6), 065101 (2015).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (2)

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Lett. (5)

Prog. Quantum Electron. (1)

J. Swiderski, “High-power mid-infrared supercontinuum sources: Current status and future perspectives,” Prog. Quantum Electron. 38(5), 189–235 (2014).
[Crossref]

Other (10)

N. Cezard, A. Dobroc, G. Canat, M. Duhant, W. Renard, C. Alhenc-Gelas, S. Lefebvre, and J. Fade, “Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture,” in SPIE Remote Sensing, (International Society for Optics and Photonics, 2011), 81820V.

A. B. Seddon, “Potential for using mid-infrared light for non-invasive, early-detection of skin cancers in vivo,” in 2013), in SPIE BiOS, (International Society for Optics and Photonics, 2013), 85760V.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 27–38.
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-state Mid-infrared Laser Sources (Springer, 2003), 458–529.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” in SPIE Security and Defence, (International Society for Optics and Photonics, 2013), 889808.

C. Xia, M. Kumar, M. N. Islam, A. Galvanauskas, F. L. Terry, and M. J. Freeman, “All-fiber-integrated mid-infrared supercontinuum system with 0.7 watts time-averaged power,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2007), CThH1.
[Crossref]

“"HITRAN” 2012 database, http://vpl.astro.washington.edu/spectra/h2opnnlimagesmicrons.htm .

“"HITRAN” database, http://hitran.iao.ru/ .

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7-3.2 μm range,” in Proc. of SPIEVol. 896189611C–2, 2014), 89611C.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Layout of the GCF-based broadband SC source. ISO: isolator; EYDF: Er/Yb co-doped fiber; EYDFA: Er/Yb co-doped fiber amplifier; LD: laser diode.
Fig. 2
Fig. 2 Output spectrum of the EYDFA.
Fig. 3
Fig. 3 (a) Group velocity dispersion (GVD, black solid line) and group velocity (GV, red solid line) of the GCF. (b) Loss curve of GCF measured in experiment (red solid line), together with the calculated losses of bulk silica (black dot-dashed line) and germania (blue dotted line).
Fig. 4
Fig. 4 (a) SC profiles beyond 2.6 μm at different GCF lengths. (b) The 10 dB decrease in peak intensity (red broken line) and output SC power (black broken line) at different GCF lengths.
Fig. 5
Fig. 5 (a) Output SC spectra at the optimized GCF length of 0.8 m and the initial GCF length of 4 m. (b) Beam profile of 700 nm waveband (captured by a CCD camera). (c) Beam profile of > 2700 nm waveband (captured by an InAs camera).
Fig. 6
Fig. 6 Absorption lines of water molecules based on HITRAN database [28] and experimental data: (a) 1.4 μm, HITRAN data (black) and experimental data (red); (b) 1.9 μm, HITRAN data (black) and experimental data (red). The measured data are mirrored on the baseline for clarity.

Metrics