Abstract

A low-complexity joint symbol synchronization and SFO estimation scheme for asynchronous optical IMDD OFDM systems based on only one training symbol is proposed. Numerical simulations and experimental demonstrations are also under taken to evaluate the performance of the mentioned scheme. The experimental results show that robust and precise symbol synchronization and the SFO estimation can be achieved simultaneously at received optical power as low as −20dBm in asynchronous OOFDM systems. SFO estimation accuracy in MSE can be lower than 1 × 10−11 under SFO range from −60ppm to 60ppm after 25km SSMF transmission. Optimal System performance can be maintained until cumulate number of employed frames for calculation is less than 50 under above-mentioned conditions. Meanwhile, the proposed joint scheme has a low level of operation complexity comparing with existing methods, when the symbol synchronization and SFO estimation are considered together. Above-mentioned results can give an important reference in practical system designs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON

Ming Chen, Hui Zhou, Zhiwei Zheng, Rui Deng, Qinghui Chen, Miao Peng, Cuiwei Liu, Jing He, Lin Chen, and Xionggui Tang
Opt. Express 25(16) 19508-19516 (2017)

Cost-Effective SFO Compensation Scheme Based on TSs for OFDM-PON

Jie Ma, Jing He, Ming Chen, Zhihua Zhou, Yi Liu, Yaoqiang Xiao, and Yun Cheng
J. Opt. Commun. Netw. 11(6) 299-306 (2019)

Real-time experimental demonstration of optical OFDM symbol synchronization in directly modulated DFB laser-based 25km SMF IMDD systems

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang
Opt. Express 18(20) 21100-21110 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  2. X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
    [Crossref]
  3. T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013).
    [Crossref] [PubMed]
  4. X. Duan, R. P. Giddings, M. Bolea, Y. Ling, B. Cao, S. Mansoor, and J. M. Tang, “Real-time experimental demonstrations of software reconfigurable optical OFDM transceivers utilizing DSP-based digital orthogonal filters for SDN PONs,” Opt. Express 22(16), 19674–19685 (2014).
    [Crossref] [PubMed]
  5. Y. Mostofi and D. C. Cox, “Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system,” IEEE Trans. Commun. 54(2), 226–230 (2006).
    [Crossref]
  6. M. Sliskovic, “Sampling frequency offset estimation and correction in OFDM systems,” in Proceedings of IEEE Conference on Electronics, Circuits and Systems, (IEEE 2001), pp. 437–440.
    [Crossref]
  7. H. Shafiee, B. Nourani, and M. Khoshgard, “Estimation and compensation of frequency offset in DAC/ADC clocks in OFDM systems,” in Proceedings of IEEE International Conference on Communications, (IEEE 2004), pp. 2397–2401.
    [Crossref]
  8. R. Bouziane, P. A. Milder, S. Erkılınç, L. Galdino, S. Kilmurray, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Experimental demonstration of 30 Gb/s direct-detection optical OFDM transmission with blind symbol synchronisation using virtual subcarriers,” Opt. Express 22(4), 4342–4348 (2014).
    [Crossref] [PubMed]
  9. R. Bouziane and R. I. Killey, “Blind symbol synchronization for direct detection optical OFDM using a reduced number of virtual subcarriers,” Opt. Express 23(5), 6444–6454 (2015).
    [Crossref] [PubMed]
  10. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time experimental demonstration of optical OFDM symbol synchronization in directly modulated DFB laser-based 25km SMF IMDD systems,” Opt. Express 18(20), 21100–21110 (2010).
    [Crossref] [PubMed]
  11. X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
    [Crossref]
  12. M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
    [Crossref]
  13. M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
    [Crossref]
  14. J. S. Bruno, V. Almenar, J. Valls, and J. L. Corral, “Low-complexity time synchronization algorithm for optical OFDM PON system using a directly modulated DFB laser,” J. Opt. Commun. Netw. 7(11), 1025–1033 (2015).
    [Crossref]
  15. M. Chen, J. He, J. Tang, and L. Chen, “Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems,” Opt. Fiber Technol. 20(3), 268–273 (2014).
    [Crossref]
  16. Y. Tao, Y. Li, M. Mao, J. Chen, L. Rao, and X. Chen, “A simple sampling clock synchronization method for filter-based OFDM-FDMA systems,” in Proceedings of IET International Conference on Smart and Sustainable City (IET 2013), pp. 457–460.
  17. Y. Cai, H. Dun, Y. Li, Z. Zhang, C. Qian, B. Cao, and Q. Zhang, “An effective sampling frequency offset compensation method for OFDMA-PON,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2015), paper AM1F. 7.
    [Crossref]
  18. A. Fort, J. W. Weijers, V. Derudder, W. Eberle, and A. Bourdoux, “A performance and complexity comparison of auto-correlation and cross-correlation for OFDM burst synchronization,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE 2003), pp. 341–344.
    [Crossref]

2015 (2)

2014 (5)

2013 (1)

2012 (1)

2011 (2)

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[Crossref]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

2010 (1)

2006 (1)

Y. Mostofi and D. C. Cox, “Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system,” IEEE Trans. Commun. 54(2), 226–230 (2006).
[Crossref]

Almenar, V.

Bayvel, P.

Bolea, M.

Bouziane, R.

Bruno, J. S.

Cao, B.

Cao, Z.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Chen, L.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
[Crossref]

M. Chen, J. He, J. Tang, and L. Chen, “Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems,” Opt. Fiber Technol. 20(3), 268–273 (2014).
[Crossref]

Chen, M.

M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
[Crossref]

M. Chen, J. He, J. Tang, and L. Chen, “Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems,” Opt. Fiber Technol. 20(3), 268–273 (2014).
[Crossref]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Corral, J. L.

Cox, D. C.

Y. Mostofi and D. C. Cox, “Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system,” IEEE Trans. Commun. 54(2), 226–230 (2006).
[Crossref]

Cvijetic, N.

Duan, X.

Erkilinç, S.

Galdino, L.

Giddings, R. P.

He, J.

M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
[Crossref]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

M. Chen, J. He, J. Tang, and L. Chen, “Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems,” Opt. Fiber Technol. 20(3), 268–273 (2014).
[Crossref]

Hugues-Salas, E.

Jin, X. Q.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[Crossref]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time experimental demonstration of optical OFDM symbol synchronization in directly modulated DFB laser-based 25km SMF IMDD systems,” Opt. Express 18(20), 21100–21110 (2010).
[Crossref] [PubMed]

Killey, R. I.

Kilmurray, S.

Ling, Y.

Mansoor, S.

Milder, P. A.

Mostofi, Y.

Y. Mostofi and D. C. Cox, “Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system,” IEEE Trans. Commun. 54(2), 226–230 (2006).
[Crossref]

Nakazawa, M.

Omiya, T.

Quinlan, T.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Tang, J.

M. Chen, J. He, J. Tang, and L. Chen, “Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems,” Opt. Fiber Technol. 20(3), 268–273 (2014).
[Crossref]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Tang, J. M.

X. Duan, R. P. Giddings, M. Bolea, Y. Ling, B. Cao, S. Mansoor, and J. M. Tang, “Real-time experimental demonstrations of software reconfigurable optical OFDM transceivers utilizing DSP-based digital orthogonal filters for SDN PONs,” Opt. Express 22(16), 19674–19685 (2014).
[Crossref] [PubMed]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[Crossref]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time experimental demonstration of optical OFDM symbol synchronization in directly modulated DFB laser-based 25km SMF IMDD systems,” Opt. Express 18(20), 21100–21110 (2010).
[Crossref] [PubMed]

Thomsen, B. C.

Valls, J.

Walker, S.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Wei, J. L.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

Wu, X.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Yoshida, M.

IEEE Photonics J. (2)

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[Crossref]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[Crossref]

IEEE Trans. Commun. (1)

Y. Mostofi and D. C. Cox, “Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system,” IEEE Trans. Commun. 54(2), 226–230 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (2)

Opt. Commun. (1)

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

M. Chen, J. He, J. Tang, and L. Chen, “Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems,” Opt. Fiber Technol. 20(3), 268–273 (2014).
[Crossref]

Other (5)

Y. Tao, Y. Li, M. Mao, J. Chen, L. Rao, and X. Chen, “A simple sampling clock synchronization method for filter-based OFDM-FDMA systems,” in Proceedings of IET International Conference on Smart and Sustainable City (IET 2013), pp. 457–460.

Y. Cai, H. Dun, Y. Li, Z. Zhang, C. Qian, B. Cao, and Q. Zhang, “An effective sampling frequency offset compensation method for OFDMA-PON,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2015), paper AM1F. 7.
[Crossref]

A. Fort, J. W. Weijers, V. Derudder, W. Eberle, and A. Bourdoux, “A performance and complexity comparison of auto-correlation and cross-correlation for OFDM burst synchronization,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE 2003), pp. 341–344.
[Crossref]

M. Sliskovic, “Sampling frequency offset estimation and correction in OFDM systems,” in Proceedings of IEEE Conference on Electronics, Circuits and Systems, (IEEE 2001), pp. 437–440.
[Crossref]

H. Shafiee, B. Nourani, and M. Khoshgard, “Estimation and compensation of frequency offset in DAC/ADC clocks in OFDM systems,” in Proceedings of IEEE International Conference on Communications, (IEEE 2004), pp. 2397–2401.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 tk, round(tk) and Pk as function of the frame index k.
Fig. 2
Fig. 2 symbol cross-correlation profile generation.
Fig. 3
Fig. 3 Definition of phase offset metric.
Fig. 4
Fig. 4 The maximum timing metric and phase offset metric versus sampling phase offset.
Fig. 5
Fig. 5 Schematic of D(k) and D'(k) with frame index.
Fig. 6
Fig. 6 Experimental setup of optical IMDD OFDM transmission system.
Fig. 7
Fig. 7 (a) Timing metric with a SPO near 0Ts. (b) Timing metric with a SPO near 0.5Ts.
Fig. 8
Fig. 8 MSE of estimated SFO versus cumulate frame number (SFO = 20ppm).
Fig. 9
Fig. 9 BER and MSE performance versus SFO.
Fig. 10
Fig. 10 Constellation with a SFO of 40ppm: (a) before and (b) after compensation.
Fig. 11
Fig. 11 BER performance versus received optical power with or without SFO compensation.

Tables (2)

Tables Icon

Table 1 Complexity comparisons of symbol synchronization.

Tables Icon

Table 2 Complexity comparisons of SFO estimation.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

M ( d ) = | P ( d ) | 2 | R ( d ) | 2
P ( d ) = n = 0 N t 1 t ( n ) r ( n + d )
R ( d ) = n = 0 N t 1 r ( n + d ) 2
M Pr o ( d ) = n t ( n ) > 0 sign [ r ( n + d ) ] n t ( n ) < 0 s i g n [ r ( n + d ) ]
d ^ = arg max d [ | M Pr o ( d ) | ]
t n = t 0 + n Δ T s
N D = r o u n d ( t 0 + N R Δ T S T S ) = N T N R
Δ = N D N R
P k = t k r o u n d ( t k ) = ( k 1 ) L Δ T s r o u n d ( ( k 1 ) L Δ T s T s ) T s
D ( k ) = sign [ M Pr o ( d ^ k ) ] [ M Pr o ( d ^ k 1 ) M Pr o ( d ^ k + 1 ) ]
D ' ( k ) = D ( k ) D ( k 1 )
M S E = E [ ( Δ ^ Δ ) 2 ] = 1 N t i m e s i = 1 N t i m e s ( Δ ^ Δ ) 2

Metrics