Abstract

We theoretically and experimentally demonstrated that the resonant wavelength of photonic crystal (PhC) nanobeam cavities can be individually post tuned by selective electron beam exposure and development. By exposing the SU-8 cladding with different doses, the thickness of the SU-8 can be precisely and individually controlled from 150 nm to 650 nm. The phenomenon is employed in the localized control of the cladding layer from above the cavity region, thereby modifying the resonant wavelengths. The transmission spectrums of the PhC nanobeam cavities are measured before exposure, after exposure and after development, respectively. Utilizing the proposed method, the resonant wavelengths of the PhC nanobeam cavities can be post-tuned as large as 30 nm. This method is applicable to the post-trimming adjustment of the frequency response of the silicon-photonic filters.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Post-fabrication trimming of photonic crystal nanobeam cavities by electron beam irradiation

Shoubao Han and Yaocheng Shi
Opt. Express 26(12) 15908-15913 (2018)

High sensitivity temperature sensor based on cascaded silicon photonic crystal nanobeam cavities

Yuguang Zhang, Penghao Liu, Senlin Zhang, Weixi Liu, Jingye Chen, and Yaocheng Shi
Opt. Express 24(20) 23037-23043 (2016)

Programmable photonic crystal nanobeam cavities

Ian W. Frank, Parag B. Deotare, Murray W. McCutcheon, and Marko Lončar
Opt. Express 18(8) 8705-8712 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  2. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  3. Y. Zhang and Y. Shi, “Temperature insensitive lower-index-mode photonic crystal nanobeam cavity,” Opt. Lett. 40(2), 264–267 (2015).
    [Crossref] [PubMed]
  4. Q. Quan and M. Lončar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [Crossref] [PubMed]
  5. K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
    [Crossref]
  6. W. S. Fegadolli, S.-H. Kim, P. A. Postigo, and A. Scherer, “Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics,” Opt. Lett. 38(22), 4656–4658 (2013).
    [Crossref] [PubMed]
  7. B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
    [Crossref] [PubMed]
  8. P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
    [Crossref] [PubMed]
  9. X. Ge, Y. Shi, and S. He, “Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect,” Opt. Lett. 39(24), 6973–6976 (2014).
    [Crossref] [PubMed]
  10. P. B. Deotare, L. C. Kogos, I. Bulu, and M. Lončar, “Photonic crystal nanobeam cavities for tunable filter and router applications,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600210 (2013).
    [Crossref]
  11. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
    [Crossref] [PubMed]
  12. D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
    [Crossref] [PubMed]
  13. Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1 (2015).
    [Crossref]
  14. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
    [Crossref] [PubMed]
  15. W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
    [Crossref]
  16. A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
    [Crossref]
  17. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
    [Crossref] [PubMed]
  18. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
    [Crossref] [PubMed]
  19. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
    [Crossref] [PubMed]
  20. S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
    [Crossref]
  21. F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
    [Crossref]
  22. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
    [Crossref]
  23. X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
    [Crossref]
  24. C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
    [Crossref]
  25. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012).
    [Crossref] [PubMed]
  26. V. Kudryashov, X.-C. Yuan, W.-C. Cheong, and K. Radhakrishnan, “Grey scale structures formation in SU-8 with e-beam and UV,” Microelectron. Eng. 67-68, 306–311 (2003).
    [Crossref]
  27. Lumerical Solutions, Inc., http://www.lumerical.com

2015 (4)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref] [PubMed]

Y. Zhang and Y. Shi, “Temperature insensitive lower-index-mode photonic crystal nanobeam cavity,” Opt. Lett. 40(2), 264–267 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (5)

2012 (4)

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012).
[Crossref] [PubMed]

K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
[Crossref] [PubMed]

2009 (2)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

2008 (1)

2007 (1)

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

2005 (1)

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

2003 (1)

V. Kudryashov, X.-C. Yuan, W.-C. Cheong, and K. Radhakrishnan, “Grey scale structures formation in SU-8 with e-beam and UV,” Microelectron. Eng. 67-68, 306–311 (2003).
[Crossref]

Adibi, A.

Ahn, B. H.

Almeida, V. R.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

Askari, M.

Assefa, S.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

Atabaki, A. H.

Atatüre, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Badolato, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Baets, R.

Balet, L.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Bulu, I.

P. B. Deotare, L. C. Kogos, I. Bulu, and M. Lončar, “Photonic crystal nanobeam cavities for tunable filter and router applications,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600210 (2013).
[Crossref]

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

Caselli, N.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Chen, C. J.

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[Crossref] [PubMed]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Cheong, W.-C.

V. Kudryashov, X.-C. Yuan, W.-C. Cheong, and K. Radhakrishnan, “Grey scale structures formation in SU-8 with e-beam and UV,” Microelectron. Eng. 67-68, 306–311 (2003).
[Crossref]

Deotare, P. B.

P. B. Deotare, L. C. Kogos, I. Bulu, and M. Lončar, “Photonic crystal nanobeam cavities for tunable filter and router applications,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600210 (2013).
[Crossref]

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Eftekhar, A. A.

Eich, M.

Faraon, A.

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

Fegadolli, W. S.

Fiore, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Francardi, M.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Frank, I. W.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Ge, X.

Gerardino, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Green, W. M. J.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

Gu, T.

Gurioli, M.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Han, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

He, S.

Hennessy, K.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Hu, E.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Husko, C. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Hwang, Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Ilic, R.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Intonti, F.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Jen, A. K.

Jeong, K.-Y.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Ji, Y.

Kang, J. H.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Kim, K. S.

Kim, K.-S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Kim, M. K.

Kim, S.-H.

Kiravittaya, S.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Kogos, L. C.

P. B. Deotare, L. C. Kogos, I. Bulu, and M. Lončar, “Photonic crystal nanobeam cavities for tunable filter and router applications,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600210 (2013).
[Crossref]

Kudryashov, V.

V. Kudryashov, X.-C. Yuan, W.-C. Cheong, and K. Radhakrishnan, “Grey scale structures formation in SU-8 with e-beam and UV,” Microelectron. Eng. 67-68, 306–311 (2003).
[Crossref]

Kumar, S.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Kwong, D.-L.

Lee, H. S.

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Lee, Y. H.

Lee, Y.-H.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Li, L. H.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Liu, P.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

Lo, G.-Q.

Loncar, M.

P. B. Deotare, L. C. Kogos, I. Bulu, and M. Lončar, “Photonic crystal nanobeam cavities for tunable filter and router applications,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600210 (2013).
[Crossref]

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Luo, J.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

McMillan, J. F.

Meric, I.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

Min, B.

Njoroge, S.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

No, Y.-S.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

O’Brien, P.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Oliveira, J. E. B.

Park, H.-G.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Pavarelli, N.

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Petrov, A. Y.

Postigo, P. A.

Prorok, S.

Quan, Q.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Radhakrishnan, K.

V. Kudryashov, X.-C. Yuan, W.-C. Cheong, and K. Radhakrishnan, “Grey scale structures formation in SU-8 with e-beam and UV,” Microelectron. Eng. 67-68, 306–311 (2003).
[Crossref]

Rastelli, A.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Riboli, F.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Scherer, A.

Schmidt, O. G.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Schrauwen, J.

Seo, M.-K.

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

Shepard, K. L.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

Shi, Y.

Song, J. H.

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

Tian, H.

Van Thourhout, D.

Vignolini, S.

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

Vlasov, Y. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

Vuckovic, J.

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

Wong, C. W.

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011).
[Crossref] [PubMed]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Yang, D.

Yang, X.

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

Yao, K.

Yu, M.

Yuan, X.-C.

V. Kudryashov, X.-C. Yuan, W.-C. Cheong, and K. Radhakrishnan, “Grey scale structures formation in SU-8 with e-beam and UV,” Microelectron. Eng. 67-68, 306–311 (2003).
[Crossref]

Zhang, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

Y. Zhang and Y. Shi, “Temperature insensitive lower-index-mode photonic crystal nanobeam cavity,” Opt. Lett. 40(2), 264–267 (2015).
[Crossref] [PubMed]

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

Zheng, J.

ACS Photonics (1)

W. S. Fegadolli, N. Pavarelli, P. O’Brien, S. Njoroge, V. R. Almeida, and A. Scherer, “Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications,” ACS Photonics 2(4), 470–474 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100(3), 033116 (2012).
[Crossref]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[Crossref]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[Crossref]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. B. Deotare, L. C. Kogos, I. Bulu, and M. Lončar, “Photonic crystal nanobeam cavities for tunable filter and router applications,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600210 (2013).
[Crossref]

IEEE Photonics J. (1)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1 (2015).
[Crossref]

J. Appl. Phys. (1)

S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” J. Appl. Phys. 109(5), 053115 (2011).
[Crossref]

Microelectron. Eng. (1)

V. Kudryashov, X.-C. Yuan, W.-C. Cheong, and K. Radhakrishnan, “Grey scale structures formation in SU-8 with e-beam and UV,” Microelectron. Eng. 67-68, 306–311 (2003).
[Crossref]

Nat. Commun. (2)

K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, and Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013).
[Crossref]

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (4)

Other (1)

Lumerical Solutions, Inc., http://www.lumerical.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic of the PhC nanobeam cavities, in which the lattice constant a = 420 nm, W x = 210 nm, W y ( 0 ) quadratically increased from W y ( 0 ) = 450 nm at the center to W y ( i m a x ) = 800 nm at the both sides, and i m a x = 17. (b) The electric field distribution of the PhC nanobeam cavities simulated by 3D-FDTD. The black lines indicate the profile of the silicon stacks. (c) The schematic of the cross-section for the PhC nanobeam cavities. The electric field distributions of the cross section for the PhC nanobeam cavities with W y ( 0 ) = 400 nm (d), W y ( 0 ) = 450 nm (e), and W y ( 0 ) = 500 nm (f), respectively.
Fig. 2
Fig. 2 (a) The microscope image of the fabricated PhC nanobeam cavities with the input/output grating couplers. (b) The SEM image of the cavity part indicated by the dashed frames in (a).
Fig. 3
Fig. 3 The schematic of the post-trimming process. The thickness of the SU-8 cladding can be precisely and individually controlled.
Fig. 4
Fig. 4 (a) The measured and simulated Q factors of the PhC cavities with different thickness of the SU-8 cladding. The inset figure in (a) shows the transmission of the PhC cavities after development, in which the black circles are the experimental data, while the red line is the Lorentz fit. (b) The resonant wavelength shifts for the PhC nanobeam cavities after the exposure (without development) using different exposure doses. (c) The resonant wavelength shifts and the thickness of the SU-8 cladding with different exposure doses (after development). (d) The relationship between the simulated resonant wavelength shift of the PhC nanobeam cavities and the thickness of the SU-8 cladding.

Metrics