Abstract

In this work, we present a detailed characterization of a small-core double-clad photonic crystal fiber, dedicated and approved for in vivo nonlinear imaging endomicroscopy. A numerical and experimental study has been performed to characterize the excitation and collection efficiencies through a 5 m-long optical fiber, including the pulse duration and spectral shape. This was first done without any distal optics, and then the performances of the system were studied by using two kinds of GRIN lenses at the fiber output. These results are compared to published data using commercial double clad fibers and GRIN lenses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second harmonic generation imaging via nonlinear endomicroscopy

Hongchun Bao, Alex Boussioutas, Reynolds Jeremy, Sarah Russell, and Min Gu
Opt. Express 18(2) 1255-1260 (2010)

Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues

Yicong Wu, Yuxin Leng, Jiefeng Xi, and Xingde Li
Opt. Express 17(10) 7907-7915 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
    [Crossref] [PubMed]
  2. M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
    [Crossref] [PubMed]
  3. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
    [Crossref] [PubMed]
  4. X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
    [Crossref] [PubMed]
  5. S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express 14(17), 7810–7820 (2006).
    [Crossref] [PubMed]
  6. C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, “Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy,” J. Biomed. Opt. 19(7), 076005 (2014).
    [Crossref] [PubMed]
  7. H. Hamzeh, C. Lefort, F. Pain, and D. Abi Haidar, “Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy,” Opt. Lett. 40(5), 808–811 (2015).
    [Crossref] [PubMed]
  8. H. Choi, S.-C. Chen, D. Kim, P. T. So, and M. L. Culpepper, “Design of a nonlinear endomicroscope biopsy probe,” in (Optical Society of America, 2006), p. TuI69.
  9. F. Braud, T. Mansuryan, G. Ducourthial, R. Habert, A. Kudlinski, and F. Louradour, “Double clad photonic crystal fiber for high resolution nonlinear endomicroscopy,” in (OSA, 2014), p. SoW3B.2.
  10. G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
    [Crossref] [PubMed]
  11. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
    [Crossref]
  12. C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36(2), 292–294 (2011).
    [Crossref] [PubMed]
  13. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
    [Crossref] [PubMed]
  14. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  15. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express 18(2), 1255–1260 (2010).
    [Crossref] [PubMed]

2015 (2)

H. Hamzeh, C. Lefort, F. Pain, and D. Abi Haidar, “Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy,” Opt. Lett. 40(5), 808–811 (2015).
[Crossref] [PubMed]

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

2014 (1)

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, “Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy,” J. Biomed. Opt. 19(7), 076005 (2014).
[Crossref] [PubMed]

2011 (2)

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36(2), 292–294 (2011).
[Crossref] [PubMed]

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

2007 (1)

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
[Crossref] [PubMed]

2004 (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2002 (1)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Abi Haidar, D.

Alkilani, A.

Bao, H.

Barthelemy, A.

Batrin, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Birks, T. A.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

Boryskina, O. P.

Bourg-Heckly, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Boussioutas, A.

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

Braud, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brevier, J.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Bückle, R.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

Chen, J.

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express 14(17), 7810–7820 (2006).
[Crossref] [PubMed]

Druilhe, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Ducourthial, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Ehlers, A.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

Fabert, M.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Fleury, V.

Gu, M.

Guilbert, T.

Habert, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Haidar, D. A.

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, “Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy,” J. Biomed. Opt. 19(7), 076005 (2014).
[Crossref] [PubMed]

Hamzeh, H.

H. Hamzeh, C. Lefort, F. Pain, and D. Abi Haidar, “Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy,” Opt. Lett. 40(5), 808–811 (2015).
[Crossref] [PubMed]

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, “Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy,” J. Biomed. Opt. 19(7), 076005 (2014).
[Crossref] [PubMed]

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

Heikal, A. A.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Huang, S.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Jeremy, R.

Jiang, X.

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

Kaatz, M.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

König, K.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

Kudlinski, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Le Grand, Y.

Leclerc, P.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Lefort, C.

Liu, Y.

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

Louradour, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, “Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy,” J. Biomed. Opt. 19(7), 076005 (2014).
[Crossref] [PubMed]

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36(2), 292–294 (2011).
[Crossref] [PubMed]

Luo, T.

Mansuryan, T.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36(2), 292–294 (2011).
[Crossref] [PubMed]

Monici, M.

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
[Crossref] [PubMed]

Odin, C.

Pain, F.

H. Hamzeh, C. Lefort, F. Pain, and D. Abi Haidar, “Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy,” Opt. Lett. 40(5), 808–811 (2015).
[Crossref] [PubMed]

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, “Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy,” J. Biomed. Opt. 19(7), 076005 (2014).
[Crossref] [PubMed]

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

Riemann, I.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

Russell, P. St. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

Russell, S.

Schenkl, S.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

Thiberville, L.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Vever-Bizet, C.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Yu, H.

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

Zhao, J.

Zhong, J.

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

Zhuo, S.

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express 14(17), 7810–7820 (2006).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Zou, D.

Biophys. J. (1)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Biotechnol. Annu. Rev. (1)

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, and D. A. Haidar, “Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy,” J. Biomed. Opt. 19(7), 076005 (2014).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Photonics Technol. Lett. IEEE (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very High Numerical Aperture Fibers,” Photonics Technol. Lett. IEEE 16, 843–845 (2004).
[Crossref]

Scanning (1)

X. Jiang, J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen, “Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy,” Scanning 33(1), 53–56 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Other (2)

H. Choi, S.-C. Chen, D. Kim, P. T. So, and M. L. Culpepper, “Design of a nonlinear endomicroscope biopsy probe,” in (Optical Society of America, 2006), p. TuI69.

F. Braud, T. Mansuryan, G. Ducourthial, R. Habert, A. Kudlinski, and F. Louradour, “Double clad photonic crystal fiber for high resolution nonlinear endomicroscopy,” in (OSA, 2014), p. SoW3B.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 A. Scanning electron microscope image of the DC PCF. a) Core region surrounded by an air-silica microstructure b) Collecting cladding c) Low index air cladding d) Maintaining cladding. B. Details of the air-silica microsctructure around the core.
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 The laser excitation is set to 800 nm (a) Delivery of the fundamental mode of the light after adjusting the collimation at the first fiber output. (b) The autocorrelation duration of the pulse at the output of DC-PCF obtained by adjusting the laser pulse duration respectively at 300 fs and 100 fs. (c) The optimal pulse duration obtained without GRIN and with GRIN 1 and GRIN 2. (d) Spectral characterization of the laser output and PhLAM fiber output. For these measurements, the wavelength and output power used were 800 nm and 20 mW (e) Pulse duration variation as a function of fiber output.
Fig. 4
Fig. 4 Backward TPF from Rhodamine with the DC-PCF (a) Fluorescence intensity as a function of the DC-PCF and GRIN output pulse duration, normalized to the TPF intensity at 60 fs, (b) Rhodamine TPF as a function of the pulse peak power at DC-PCF output.

Tables (2)

Tables Icon

Table 1 Measured Pulse Duration at the Output of the Endoscopic Fiber Alone, with Grin 1 and with Grin 2 for Different Laser Cavity Pulse Durations

Tables Icon

Table 2 Resolution of the Excitation Spot in the Focal Plan of the Two GRIN Lenses Coupled to Our Fiber

Metrics