Abstract

We theoretically analyzed and experimentally demonstrated an injection-locking based all-optical flip-flop memory using a simple and compact tunable V-cavity laser (VCL). A bistable region in the tuning characteristics of the VCL is employed for the flip-flop operation. The state of the VCL can be set and reset by injecting signal pulses at two different wavelengths. The pulse power for both set and reset signal is only about 1 pJ. Short response times of about 150 ps are measured for storing and erasing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical switching and flip-flop based on dynamically controlled bistability in a V-type atomic system

Ya-Nan Li, Yu-Yuan Chen, and Ren-Gang Wan
J. Opt. Soc. Am. B 36(7) 1799-1805 (2019)

All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode

Yong Deok Jeong, Jeong Sik Cho, Yong Hyub Won, Hyuek Jae Lee, and Hark Yoo
Opt. Express 14(9) 4058-4063 (2006)

All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

H. Jiang, Y. Chaen, T. Hagio, K. Tsuruda, M. Jizodo, S. Matsuo, J. Xu, C. Peucheret, and K. Hamamoto
Opt. Express 19(26) B119-B124 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  2. H. Park, J. P. Mack, D. J. Bluementhal, and J. E. Bowers, “An integrated recirculating optical buffer,” Opt. Express 16(15), 11124–11131 (2008).
    [Crossref] [PubMed]
  3. C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
    [Crossref]
  4. J. He and M. Cada, “Optical bistability in semiconductor periodic structures,” IEEE J. Quantum Electron. 27(5), 1182–1188 (1991).
    [Crossref]
  5. J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
    [Crossref]
  6. R. Clavero, F. Ramos, and J. Martí, “All-optical flip-flop based on an active Mach-Zehnder interferometer with a feedback loop,” Opt. Lett. 30(21), 2861–2863 (2005).
    [Crossref] [PubMed]
  7. E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
    [Crossref]
  8. M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
    [Crossref]
  9. M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
    [Crossref] [PubMed]
  10. T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
    [Crossref]
  11. T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
    [Crossref]
  12. K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
    [Crossref] [PubMed]
  13. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896–3911 (2008).
    [Crossref] [PubMed]
  14. J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio,” Opt. Lett. 36(21), 4230–4232 (2011).
    [Crossref] [PubMed]
  15. S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express 21(11), 13564–13571 (2013).
    [Crossref] [PubMed]
  16. Y. Wu, X. Xiong, Y. Zhu, J. Meng, and J. J. He, “All-optical wavelength conversion using optical injection induced wavelength switching in v-cavity laser,” In PIERS Proceedings (2014), pp. 1–5.
  17. J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21(11), 496–497 (1985).
    [Crossref]
  18. C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
    [Crossref]
  19. H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
    [Crossref]
  20. H. Kawaguchi, I. H. White, M. J. Offside, and J. E. Carroll, “Ultrafast switching in polarization-bistable laser diodes,” Opt. Lett. 17(2), 130–132 (1992).
    [Crossref] [PubMed]

2014 (1)

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

2013 (1)

2011 (2)

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio,” Opt. Lett. 36(21), 4230–4232 (2011).
[Crossref] [PubMed]

2008 (3)

2006 (2)

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

2005 (3)

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

R. Clavero, F. Ramos, and J. Martí, “All-optical flip-flop based on an active Mach-Zehnder interferometer with a feedback loop,” Opt. Lett. 30(21), 2861–2863 (2005).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

2004 (1)

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

1997 (1)

H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
[Crossref]

1993 (1)

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

1992 (1)

1991 (1)

J. He and M. Cada, “Optical bistability in semiconductor periodic structures,” IEEE J. Quantum Electron. 27(5), 1182–1188 (1991).
[Crossref]

1987 (1)

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[Crossref]

1985 (1)

J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21(11), 496–497 (1985).
[Crossref]

Avramopoulos, H.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Baets, R.

Beausoleil, R. G.

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

Binsma, H.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Bluementhal, D. J.

Bowers, J. E.

Cada, M.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

J. He and M. Cada, “Optical bistability in semiconductor periodic structures,” IEEE J. Quantum Electron. 27(5), 1182–1188 (1991).
[Crossref]

Carroll, J. E.

Clavero, R.

De Vries, T.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Den Besten, J. H.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Dorren, H. J.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Dorren, H. J. S.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Dupertuis, M.-A.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

Fujita, T.

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[Crossref]

Fye, D. M.

J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21(11), 496–497 (1985).
[Crossref]

Guo, S.

Hamamoto, K.

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Hamerly, R.

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

He, J.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

J. He and M. Cada, “Optical bistability in semiconductor periodic structures,” IEEE J. Quantum Electron. 27(5), 1182–1188 (1991).
[Crossref]

He, J.-J.

Herrera, J.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Hill, M. T.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Holm-Nielsen, P. V.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Huybrechts, K.

Jeppesen, P.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Jin, J.

Kakitsuka, T.

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

Kawaguchi, H.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
[Crossref]

H. Kawaguchi, I. H. White, M. J. Offside, and J. E. Carroll, “Ultrafast switching in polarization-bistable laser diodes,” Opt. Lett. 17(2), 130–132 (1992).
[Crossref] [PubMed]

Kehayas, E.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Khoe, G. D.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Leijtens, X. J.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Liu, D.

Liu, Y.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Mabuchi, H.

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

Mack, J. P.

Manning, J.

J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21(11), 496–497 (1985).
[Crossref]

Marti, J.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Martí, J.

Martin, D.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

Martinez, J. M.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Matsuo, S.

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

Maxwell, G.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

McDougall, R.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Meng, J.

Mori, T.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

Morier-Genoud, F.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

Morthier, G.

Nakano, Y.

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Oei, Y. S.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Offside, M. J.

Olshansky, R.

J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21(11), 496–497 (1985).
[Crossref]

Park, H.

Pelc, J. S.

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

Powazinik, W.

J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21(11), 496–497 (1985).
[Crossref]

Raburn, M.

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

Ramos, F.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

R. Clavero, F. Ramos, and J. Martí, “All-optical flip-flop based on an active Mach-Zehnder interferometer with a feedback loop,” Opt. Lett. 30(21), 2861–2863 (2005).
[Crossref] [PubMed]

Rolland, C.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

Santori, C.

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

Schremer, A.

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[Crossref]

Segawa, T.

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

Seoane, J.

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Smalbrugge, B.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Smit, M. K.

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Spring Thorpe, A. J.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

Suzuki, H.

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

Takahashi, R.

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

Takenaka, M.

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

Tang, C. L.

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[Crossref]

Tezak, N.

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Wang, L.

Wang, Y.

White, I. H.

Yamayoshi, Y.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

Yu, T.

Zhang, S.

S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express 21(11), 13564–13571 (2013).
[Crossref] [PubMed]

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

Appl. Phys. Lett. (3)

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Spring Thorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63(7), 866 (1993).
[Crossref]

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[Crossref]

Electron. Lett. (1)

J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers,” Electron. Lett. 21(11), 496–497 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

J. He and M. Cada, “Optical bistability in semiconductor periodic structures,” IEEE J. Quantum Electron. 27(5), 1182–1188 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (3)

E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P. V. Holm-Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H. J. S. Dorren, P. Jeppesen, and H. Avramopoulos, “All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks,” IEEE Photonics Technol. Lett. 18(16), 1750–1752 (2006).
[Crossref]

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

T. Kakitsuka, S. Matsuo, K. Hamamoto, T. Segawa, H. Suzuki, and R. Takahashi, “Injection-locked flip-flop operation of a DBR laser,” IEEE Photonics Technol. Lett. 17(23), 1261–1263 (2011).
[Crossref]

Nature (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Appl. (1)

C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R. Hamerly, and H. Mabuchi, “Quantum noise in large-scale coherent nonlinear photonic circuits,” Phys. Rev. Appl. 1(5), 054005 (2014).
[Crossref]

Other (1)

Y. Wu, X. Xiong, Y. Zhu, J. Meng, and J. J. He, “All-optical wavelength conversion using optical injection induced wavelength switching in v-cavity laser,” In PIERS Proceedings (2014), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the VCL; (b) Lasing threshold of the cavity modes.
Fig. 2
Fig. 2 Simulated tuning hysteresis loop assuming the threshold gain difference between mode 1 and mode 2 is (a) 5.7 cm−1; (b) 4.75 cm−1; (c) 4.5 cm−1; and (d) 4.25 cm−1.
Fig. 3
Fig. 3 Calculated VCL output at mode 2: (a) with a 1.6 ns set-signal at wavelength 2; (b) with a 1.6 ns reset-signal at wavelength 1.
Fig. 4
Fig. 4 Calculated switching time versus input optical power.
Fig. 5
Fig. 5 Measured hysteresis characteristics of mode 1 at 1549.56 nm (a) and mode 2 at 1550.30 nm (b), and the corresponding wavelength hysteresis loop (c).
Fig. 6
Fig. 6 Optical spectra of the VCL output at both states.
Fig. 7
Fig. 7 Schematic of the experiment setup (PC: polarization controller; MZ: Mach-Zehnder modulator; PPG: pulse pattern generator; AWG: arrayed waveguide grating).
Fig. 8
Fig. 8 Dynamic all-optic flip-flop operation: (a) set signal at 1550.30nm; (b) reset signal at 1549.56nm; (c) output at 1550.30 nm; (d) output at 1549.56nm. The rising and falling edges of the output signals are shown, respectively, in (e) and (f) for 1550.30 nm, and in(g) and (h) for 1549.56 nm.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d N d t = η i I q V N τ s v g g ( N ) ( 1 ε m m I m ε m n I n ) I m v g g ( N ) ( 1 ε n m I m ε n n I n ) I n ,
d I m d t = v g Γ g ( N ) ( 1 ε m m I m ε m n I n ) I m I m τ m + β B N 2 + ( I m η I i m ) 1/2 τ i p ,
d I n d t = v g Γ g ( N ) ( 1 ε n m I m ε n n I n ) I n I n τ n + β B N 2 + ( I n η I i n ) 1/2 τ i p ,

Metrics