Abstract

This paper demonstrates lasing of the whispering gallery modes in polymer coated optofluidic capillaries and their application to refractive index sensing. The laser gain medium used here is fluorescent Nile Red dye, which is embedded inside the high refractive index polymer coating. We investigate the refractometric sensing properties of these devices for different coating thicknesses, revealing that the high Q factors required to achieve low lasing thresholds can only be realized for relatively thick polymer coatings (in this case ≥ 800 nm). Lasing capillaries therefore tend to have a lower refractive index sensitivity, compared to non-lasing capillaries which can have a thinner polymer coating, due to the stronger WGM confinement within the polymer layer. However we find that the large improvement in signal-to-noise ratio realized for lasing capillaries more than compensates for the decreased sensitivity and results in an order-of-magnitude improvement in the detection limit for refractive index sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescent polymer coated capillaries as optofluidic refractometric sensors

Kristopher J. Rowland, Alexandre François, Peter Hoffmann, and Tanya M. Monro
Opt. Express 21(9) 11492-11505 (2013)

Whispering gallery mode structure in polymer-coated lasing microspheres

K. Gardner, Y. Zhi, L. Tan, S. Lane, Y.-F. Xiao, and A. Meldrum
J. Opt. Soc. Am. B 34(10) 2140-2146 (2017)

Refractometric sensing with fluorescent-core microcapillaries

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum
Opt. Express 19(22) 21540-21551 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Roy, “Optical resonator based biomolecular sensors and logic devices,” J. Indian Inst. Sci. 92, 233–251 (2012).
  2. V. Lefevre-Seguin, “Whispering gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
    [Crossref]
  3. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  4. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  5. J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
    [Crossref]
  6. C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
    [Crossref]
  7. P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
    [Crossref]
  8. I. White, H. Zhu, J. Suter, X. Fan, and M. Zourob, “Label-free detection with the liquid core optical ring resonator sensing platform,” in Biosensors and Biodetection, A. Rasooly, and K. Herold, eds. (Humana, 2009), pp. 139–165.
  9. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
    [Crossref] [PubMed]
  10. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [PubMed]
  11. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  12. Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
    [Crossref]
  13. Y. Zhi, J. Valenta, and A. Meldrum, “Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots,” J. Opt. Soc. Am. B 30(11), 3079–3085 (2013).
    [Crossref]
  14. N. Riesen, T. Reynolds, A. François, M. R. Henderson, and T. M. Monro, “Q-factor limits for far-field detection of whispering gallery modes in active microspheres,” Opt. Express 23(22), 28896–28904 (2015).
    [Crossref] [PubMed]
  15. A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: A practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
    [Crossref] [PubMed]
  16. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
    [Crossref] [PubMed]
  17. S. Lane, J. Chan, T. Thiessen, and A. Meldrum, “Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors,” Sensor Actuat. Biol. Chem. 190, 752–759 (2014).
  18. K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
    [Crossref] [PubMed]
  19. V. Zamora, Z. Zhang, and A. Meldrum, “Refractometric sensing of heavy oils in fluorescent core microcapillaries,” Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 70(3), 487–495 (2015).
    [Crossref]
  20. R. Arshady, “Microspheres for biomedical applications: preparation of reactive and labelled microspheres,” Biomaterials 14(1), 5–15 (1993).
    [Crossref] [PubMed]
  21. K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
    [Crossref] [PubMed]
  22. S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
    [Crossref] [PubMed]
  23. Y. Jun and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
    [Crossref]
  24. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17(18), 1280–1282 (1992).
    [Crossref] [PubMed]
  25. P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
    [Crossref]
  26. H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
    [Crossref]
  27. H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
    [Crossref] [PubMed]
  28. H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
    [Crossref]
  29. Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
    [Crossref]
  30. Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
    [Crossref]
  31. A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
    [Crossref]
  32. M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
    [Crossref]
  33. C.-Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
    [Crossref]
  34. Poly(benzyl methacrylate) (Polysciences, 2015), http://www.polysciences.com/default/catalog-products/polybenzyl-methacrylate/
  35. A. Meldrum and F. Marsiglio, “Capillary-type microfluidic sensors based on optical whispering gallery mode resonances,” Rev. Nanosci. Nanotechnol. 3(3), 193–209 (2014).
    [Crossref]
  36. I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23(7), 1434–1441 (2006).
    [Crossref]
  37. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  38. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  39. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
    [Crossref]
  40. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  41. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
    [Crossref] [PubMed]
  42. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36(17), 3521–3523 (2011).
    [Crossref] [PubMed]
  43. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
    [Crossref]

2015 (8)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

N. Riesen, T. Reynolds, A. François, M. R. Henderson, and T. M. Monro, “Q-factor limits for far-field detection of whispering gallery modes in active microspheres,” Opt. Express 23(22), 28896–28904 (2015).
[Crossref] [PubMed]

A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: A practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
[Crossref] [PubMed]

V. Zamora, Z. Zhang, and A. Meldrum, “Refractometric sensing of heavy oils in fluorescent core microcapillaries,” Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 70(3), 487–495 (2015).
[Crossref]

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
[Crossref] [PubMed]

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

C.-Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

2014 (4)

A. Meldrum and F. Marsiglio, “Capillary-type microfluidic sensors based on optical whispering gallery mode resonances,” Rev. Nanosci. Nanotechnol. 3(3), 193–209 (2014).
[Crossref]

S. Lane, J. Chan, T. Thiessen, and A. Meldrum, “Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors,” Sensor Actuat. Biol. Chem. 190, 752–759 (2014).

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (3)

2010 (3)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

2009 (3)

P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
[Crossref]

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

2008 (1)

2007 (1)

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
[Crossref]

2006 (4)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23(7), 1434–1441 (2006).
[Crossref]

Y. Jun and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

2005 (2)

Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
[Crossref]

Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
[Crossref]

2000 (2)

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

1999 (1)

V. Lefevre-Seguin, “Whispering gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
[Crossref]

1993 (1)

R. Arshady, “Microspheres for biomedical applications: preparation of reactive and labelled microspheres,” Biomaterials 14(1), 5–15 (1993).
[Crossref] [PubMed]

1992 (1)

1973 (1)

1965 (1)

Afshar V, S.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Akbulut, M.

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Akihiko, F.

Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
[Crossref]

An, K.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

Arnold, S.

Arshady, R.

R. Arshady, “Microspheres for biomedical applications: preparation of reactive and labelled microspheres,” Biomaterials 14(1), 5–15 (1993).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Berneschi, S.

Bianucci, P.

P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
[Crossref]

Bolaños Quiñones, V. A.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Chan, J.

S. Lane, J. Chan, T. Thiessen, and A. Meldrum, “Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors,” Sensor Actuat. Biol. Chem. 190, 752–759 (2014).

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chin, K. H.

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Chough, Y.-T.

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

Chu, P. K.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Conti, G. N.

Cosi, F.

Dai, J.

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

Ding, F.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Driver, H. S. T.

Fan, X.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Farnesi, D.

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

François, A.

Fujii, A.

Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
[Crossref]

Ginart, P.

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Gindy, M. E.

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Guo, L. J.

Y. Jun and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

Guo, Z.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Hale, G. M.

He, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Henderson, M. R.

Hessel, C. M.

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
[Crossref]

Hoffmann, P.

Huang, G.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Huang, Y.-X.

C.-Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

Hutcheon, R. J.

Ishizumi, A.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Ji, H.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Jiang, M.

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

Jun, Y.

Y. Jun and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

Katsumi, Y.

Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
[Crossref]

Kim, J. B.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Kiravittaya, S.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Knight, J. C.

Lane, S.

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
[Crossref] [PubMed]

S. Lane, J. Chan, T. Thiessen, and A. Meldrum, “Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors,” Sensor Actuat. Biol. Chem. 190, 752–759 (2014).

Lee, J.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

Lefevre-Seguin, V.

V. Lefevre-Seguin, “Whispering gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
[Crossref]

Lenz, F. C.

P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
[Crossref]

Li, H.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Li, J.

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, P.

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Lu, J.

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

Malac, M.

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
[Crossref]

Malitson, I. H.

Manchee, C. P. K.

Marsiglio, F.

A. Meldrum and F. Marsiglio, “Capillary-type microfluidic sensors based on optical whispering gallery mode resonances,” Rev. Nanosci. Nanotechnol. 3(3), 193–209 (2014).
[Crossref]

Masanori, O.

Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
[Crossref]

McFarlane, S.

Mei, Y.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Meldrum, A.

V. Zamora, Z. Zhang, and A. Meldrum, “Refractometric sensing of heavy oils in fluorescent core microcapillaries,” Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 70(3), 487–495 (2015).
[Crossref]

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
[Crossref] [PubMed]

A. Meldrum and F. Marsiglio, “Capillary-type microfluidic sensors based on optical whispering gallery mode resonances,” Rev. Nanosci. Nanotechnol. 3(3), 193–209 (2014).
[Crossref]

S. Lane, J. Chan, T. Thiessen, and A. Meldrum, “Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors,” Sensor Actuat. Biol. Chem. 190, 752–759 (2014).

Y. Zhi, J. Valenta, and A. Meldrum, “Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots,” J. Opt. Soc. Am. B 30(11), 3079–3085 (2013).
[Crossref]

J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref] [PubMed]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref] [PubMed]

P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
[Crossref]

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
[Crossref]

Monro, T. M.

Moon, H.-J.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

Nishimura, T.

Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
[Crossref]

Oe, K.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Ozaki, M.

Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
[Crossref]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Pau, S.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Pelli, S.

Prud’homme, R. K.

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Quan, H.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Querry, M. R.

Reynolds, T.

A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: A practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
[Crossref] [PubMed]

N. Riesen, T. Reynolds, A. François, M. R. Henderson, and T. M. Monro, “Q-factor limits for far-field detection of whispering gallery modes in active microspheres,” Opt. Express 23(22), 28896–28904 (2015).
[Crossref] [PubMed]

Riesen, N.

N. Riesen, T. Reynolds, A. François, M. R. Henderson, and T. M. Monro, “Q-factor limits for far-field detection of whispering gallery modes in active microspheres,” Opt. Express 23(22), 28896–28904 (2015).
[Crossref] [PubMed]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Righini, G. C.

Robertson, G. N.

Rodríguez, J. R.

P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
[Crossref]

Rowland, K. J.

Roy, S.

F. Vollmer and S. Roy, “Optical resonator based biomolecular sensors and logic devices,” J. Indian Inst. Sci. 92, 233–251 (2012).

Sasaki, F.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Schmidt, O. G.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Silverstone, J. W.

Soboyejo, W.

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Soria, S.

Summers, M. A.

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
[Crossref]

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

Takeaki, R.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Tan, C.-Y.

C.-Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

Teraoka, I.

Tetsuharu, N.

Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
[Crossref]

Theriault, C.

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Thiessen, T.

S. Lane, J. Chan, T. Thiessen, and A. Meldrum, “Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors,” Sensor Actuat. Biol. Chem. 190, 752–759 (2014).

Tomita, S.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Valenta, J.

Veinot, J. G. C.

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref] [PubMed]

P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
[Crossref]

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
[Crossref]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

F. Vollmer and S. Roy, “Optical resonator based biomolecular sensors and logic devices,” J. Indian Inst. Sci. 92, 233–251 (2012).

Wang, J.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

West, P.

White, I. M.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xu, C.

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

Yamashita, K.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Yanagi, H.

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Yang, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yi, J.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

Yoshida, Y.

Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
[Crossref]

Yoshino, K.

Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
[Crossref]

Yuichi, Y.

Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
[Crossref]

Zamora, V.

V. Zamora, Z. Zhang, and A. Meldrum, “Refractometric sensing of heavy oils in fluorescent core microcapillaries,” Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 70(3), 487–495 (2015).
[Crossref]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref] [PubMed]

Zhan, T.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Zhang, Z.

V. Zamora, Z. Zhang, and A. Meldrum, “Refractometric sensing of heavy oils in fluorescent core microcapillaries,” Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 70(3), 487–495 (2015).
[Crossref]

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Zhi, Y.

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

ACS Nano (1)

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. Akbulut, P. Ginart, M. E. Gindy, C. Theriault, K. H. Chin, W. Soboyejo, and R. K. Prud’homme, “Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation,” Adv. Funct. Mater. 19(5), 718–725 (2009).
[Crossref]

Adv. Mater. (1)

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19(21), 3513–3516 (2007).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

P. Li, C. Xu, M. Jiang, J. Dai, J. Li, and J. Lu, “Lasing behavior modulation in a layered cylindrical microcavity,” Appl. Phys. B 118(1), 93–100 (2015).
[Crossref]

Appl. Phys. Lett. (5)

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76(25), 3679–3681 (2000).
[Crossref]

H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, and K. Oe, “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Appl. Phys. Lett. 95(3), 033306 (2009).
[Crossref]

Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Appl. Phys. Lett. 86(14), 141903 (2005).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Biomaterials (1)

R. Arshady, “Microspheres for biomedical applications: preparation of reactive and labelled microspheres,” Biomaterials 14(1), 5–15 (1993).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jun and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

J. Chem. Eng. Data (1)

C.-Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

J. Indian Inst. Sci. (1)

F. Vollmer and S. Roy, “Optical resonator based biomolecular sensors and logic devices,” J. Indian Inst. Sci. 92, 233–251 (2012).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Yuichi, N. Tetsuharu, F. Akihiko, O. Masanori, and Y. Katsumi, “Lasing of Poly(3-alkylthiophene) in microcapillary geometry,” Jpn. J. Appl. Phys. 44(33), L1056–L1058 (2005).
[Crossref]

Laser Photonics Rev. (1)

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Nat. Nanotechnol. (2)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles (1)

V. Zamora, Z. Zhang, and A. Meldrum, “Refractometric sensing of heavy oils in fluorescent core microcapillaries,” Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 70(3), 487–495 (2015).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Opt. Mater. (1)

V. Lefevre-Seguin, “Whispering gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
[Crossref]

Phys. Rev. Lett. (1)

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

Physica E (1)

P. Bianucci, J. R. Rodríguez, F. C. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009).
[Crossref]

Polymer (Guildf.) (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Rev. Nanosci. Nanotechnol. (1)

A. Meldrum and F. Marsiglio, “Capillary-type microfluidic sensors based on optical whispering gallery mode resonances,” Rev. Nanosci. Nanotechnol. 3(3), 193–209 (2014).
[Crossref]

Sensor Actuat. Biol. Chem. (1)

S. Lane, J. Chan, T. Thiessen, and A. Meldrum, “Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors,” Sensor Actuat. Biol. Chem. 190, 752–759 (2014).

Sensors (Basel) (1)

A. François, T. Reynolds, and T. M. Monro, “A fiber-tip label-free biological sensing platform: A practical approach toward in-vivo sensing,” Sensors (Basel) 15(1), 1168–1181 (2015).
[Crossref] [PubMed]

Other (2)

I. White, H. Zhu, J. Suter, X. Fan, and M. Zourob, “Label-free detection with the liquid core optical ring resonator sensing platform,” in Biosensors and Biodetection, A. Rasooly, and K. Herold, eds. (Humana, 2009), pp. 139–165.

Poly(benzyl methacrylate) (Polysciences, 2015), http://www.polysciences.com/default/catalog-products/polybenzyl-methacrylate/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-sectional SEM images (90,000 times magnification) of the polymer coated capillaries for polymer solution concentrations of (A) 25, (B) 50, (C) 75 and (D) 100 mg/mL.
Fig. 2
Fig. 2 Depiction of the optical setup used for measuring the WGM-modulated fluorescence spectra from the dye-doped polymer coated capillaries.
Fig. 3
Fig. 3 Optical constants of the PBZMA film. The main panel shows the real part of the refractive index (m) and the inset shows the extinction coefficient (κ).
Fig. 4
Fig. 4 Intensity profiles for the resonance closest to 610 nm (i.e. l = 390–377) for polymer thicknesses: (A) 800 nm, (B) 600 nm, (C) 400 nm and (D) 200 nm. The thin polymer film is represented by the red-shaded region between the dotted lines; the inner region is water [37] and the outer region is silica glass [38]. Dispersion was incorporated for all calculations.
Fig. 5
Fig. 5 WGM spectra of the dye-doped polymer coated capillaries with the polymer coating thickness varying from 200 to 800 nm. For clarity the different spectra were normalized and offset.
Fig. 6
Fig. 6 (A), (B) and (C) WGM spectrum of the capillary with the 800 nm thick polymer coating, for pump powers of 0.71, 0,89 and 1.13 µJ respectively. (D) The intensity of the dominant resonance (black symbols) and its Q factor (green symbols) as a function of the pulse energy. The dashed lines highlight both the fluorescence (black) and stimulated emission regimes (red). (E) The fluctuation of the resonance position as a function of the pump pulse energy for the most intense resonance.
Fig. 7
Fig. 7 (A)-(B) Two lasing WGM resonances of the 800 nm polymer coated capillary, monitored as different refractive index solutions were pumped through the channel. (C) The entire lasing WGM spectrum of the same capillary showing the two monitored resonances and (D) the resonance positions as a function of the refractive index inside the capillary channel.

Tables (1)

Tables Icon

Table 1 Thickness of the Polymer Coating, and the Q Factor of the WGMs as a Function of Polymer Concentration

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

m( r )={ m 1 , rb m 2 , b<ra m 3 , r>a },
E S ( m 1 k 0 r )={ A l J 1 ( m 1 k 0 r ), rb B l H l ( 2 ) ( m 1 k 0 r )+ C l H l ( 1 ) ( m 2 k 0 r ), b<ra D l H l ( 1 ) ( m 3 k 0 r ) r>a },
m 3 H l ( 1 )' ( m 3 k 0 a ) m 2 H l ( 1 ) ( m 3 k 0 a ) = B l H l ( 2 )' ( m 2 k 0 a )+ H l ( 1 )' ( m 2 k 0 a ) B l H l ( 2 ) ( m 2 k 0 a )+ H l ( 1 ) ( m 2 k 0 a ) ,
B l = m 2 J 1 ( m 1 k 0 b ) H l ( 1 )' ( m 2 k 0 b ) m 1 J l ' ( m 1 k 0 b ) H l ( 1 ) ( m 2 k 0 b ) m 2 J 1 ( m 1 k 0 b ) H l ( 2 )' ( m 2 k 0 b )+ m 1 J l ' ( m 1 k 0 b ) H l ( 2 ) ( m 2 k 0 b ) ,
S TE = λ 0 m 1 I 1 I 1 + I 2 + I 3 ,
3σ=3 σ amp 2 + σ temp 2 + σ spect 2 ,
σ amp 1 4.5 λ ( SNR ) 1 4 Q  ,
Δ λ min = 2.2× 10 20 ×Δ f peak 0.29 × P 0.65 SN R 0.51 ,

Metrics