Abstract

We demonstrate continuous-wave four-wave mixing to probe the acoustic vibrations of gold nanorods in aqueous solution. The nonlinear optical response of gold nanorods, resonantly enhanced by electrostriction coupling to the acoustic vibration modes, shows an extensional vibration which combines an expansion along the long axis with a contraction along the short axis. We also observed the extensional vibration of gold nanospheres as byproducts of the gold nanorod synthesis. Theoretical calculation of the nanoparticle size and distribution based on the vibrational frequency agrees well with the experimental results obtained from the scanning electron microscopic examination, indicating the four-wave mixing technique can provide in situ nanoparticle characterization.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Probing the acoustic vibrations of complex-shaped metal nanoparticles with four-wave mixing

Jian Wu, Dao Xiang, Ghazal Hajisalem, Fan-Cheng Lin, Jer-Shing Huang, Chun-Hong Kuo, and Reuven Gordon
Opt. Express 24(21) 23747-23754 (2016)

Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

Yun-Sheng Chen, Wolfgang Frey, Seungsoo Kim, Kimberly Homan, Pieter Kruizinga, Konstantin Sokolov, and Stanislav Emelianov
Opt. Express 18(9) 8867-8878 (2010)

Surface plasmon effects on two photon luminescence of gold nanorods

Da-Shin Wang, Fu-Yin Hsu, and Chii-Wann Lin
Opt. Express 17(14) 11350-11359 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008).
    [Crossref] [PubMed]
  2. N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
    [Crossref] [PubMed]
  3. X. Wu, J. Zhang, and Q. Gong, “Metal-insulator-metal nanorod arrays for subwavelength imaging,” Opt. Express 17(4), 2818–2825 (2009).
    [Crossref] [PubMed]
  4. C. B. Talbot, R. Patalay, I. Munro, S. Warren, F. Ratto, P. Matteini, R. Pini, H. G. Breunig, K. König, A. C. Chu, G. W. Stamp, M. A. Neil, P. M. French, and C. Dunsby, “Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging,” Opt. Express 19(15), 13848–13861 (2011).
    [Crossref] [PubMed]
  5. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  6. W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
    [Crossref] [PubMed]
  7. A. B. Taylor, P. Michaux, A. S. Mohsin, and J. W. Chon, “Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage,” Opt. Express 22(11), 13234–13243 (2014).
    [Crossref] [PubMed]
  8. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
    [Crossref] [PubMed]
  9. C. P. Huang, X. G. Yin, H. Huang, and Y. Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17(8), 6407–6413 (2009).
    [Crossref] [PubMed]
  10. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  11. B. D. Busbee, S. O. Obare, and C. J. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” Adv. Mater. 15(5), 414–416 (2003).
    [Crossref]
  12. N. Xu, B. Bai, Q. Tan, and G. Jin, “Accurate geometric characterization of gold nanorod ensemble by an inverse extinction/scattering spectroscopic method,” Opt. Express 21(18), 21639–21650 (2013).
    [Crossref] [PubMed]
  13. N. Xu, B. Bai, Q. Tan, and G. Jin, “Fast statistical measurement of aspect ratio distribution of gold nanorod ensembles by optical extinction spectroscopy,” Opt. Express 21(3), 2987–3000 (2013).
    [Crossref] [PubMed]
  14. X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
    [Crossref] [PubMed]
  15. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
    [Crossref]
  16. P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
    [Crossref] [PubMed]
  17. W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
    [Crossref] [PubMed]
  18. P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
    [Crossref] [PubMed]
  19. M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
    [Crossref] [PubMed]
  20. H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
    [Crossref] [PubMed]
  21. P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
    [Crossref] [PubMed]
  22. G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
    [Crossref]
  23. T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
    [Crossref] [PubMed]
  24. G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
    [Crossref]
  25. M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
    [Crossref] [PubMed]
  26. K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
    [Crossref] [PubMed]
  27. S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
    [Crossref]
  28. H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
    [Crossref]
  29. D. R. Lide, Handbook of Chemistry and Physics (CRC, 2004).
  30. D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47(1), 013001 (2014).
    [Crossref]
  31. G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116(18), 8048–8055 (2002).
    [Crossref]
  32. N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
    [Crossref]
  33. L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
    [Crossref]

2015 (1)

2014 (4)

A. B. Taylor, P. Michaux, A. S. Mohsin, and J. W. Chon, “Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage,” Opt. Express 22(11), 13234–13243 (2014).
[Crossref] [PubMed]

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47(1), 013001 (2014).
[Crossref]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

2013 (3)

2012 (2)

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (2)

2008 (3)

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

2007 (1)

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

2006 (2)

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

2005 (2)

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

2004 (2)

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
[Crossref]

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

2003 (2)

B. D. Busbee, S. O. Obare, and C. J. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” Adv. Mater. 15(5), 414–416 (2003).
[Crossref]

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

2002 (2)

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116(18), 8048–8055 (2002).
[Crossref]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

1999 (2)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

1996 (1)

L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
[Crossref]

Bai, B.

Breunig, H. G.

Busbee, B. D.

B. D. Busbee, S. O. Obare, and C. J. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” Adv. Mater. 15(5), 414–416 (2003).
[Crossref]

Cao, Y.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

Champagnon, B.

L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
[Crossref]

Cheng, W.

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

Chevy, F.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

Chon, J. W.

A. B. Taylor, P. Michaux, A. S. Mohsin, and J. W. Chon, “Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage,” Opt. Express 22(11), 13234–13243 (2014).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

Chu, A. C.

Crespi, V. H.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

de Liejer, S.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Del Fatti, N.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

Ding, A. A.

Dong, S.

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

Dunsby, C.

Duval, E.

L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
[Crossref]

Ekimov, A. I.

L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
[Crossref]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Flytzanis, C.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

French, P. M.

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Gelfand, R. M.

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Gong, Q.

Gordon, R.

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Gu, M.

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

Guo, D.

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47(1), 013001 (2014).
[Crossref]

Hartland, G. V.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
[Crossref]

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116(18), 8048–8055 (2002).
[Crossref]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Hu, M.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Hu, X.

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

Huang, C. P.

Huang, H.

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Jhan, S.

Jin, G.

Juste, J. P.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

Kistler, K. C.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

König, K.

Kosel, T.

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

Kou, X.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Kudriavtsev, I. A.

L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
[Crossref]

Lammert, P. E.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

Li, P. C.

Liao, C. K.

Lin, C. H.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Lippitz, M.

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Lo, S. S.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

Luo, J.

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47(1), 013001 (2014).
[Crossref]

Major, T. A.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

Mallouk, T. E.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

Marquez, M.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Matteini, P.

McLellan, J. M.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Michaux, P.

Mohsin, A. S.

Mulvaney, P.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Munro, I.

Murphy, C. J.

B. D. Busbee, S. O. Obare, and C. J. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” Adv. Mater. 15(5), 414–416 (2003).
[Crossref]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Neil, M. A.

Ni, W.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Obare, S. O.

B. D. Busbee, S. O. Obare, and C. J. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” Adv. Mater. 15(5), 414–416 (2003).
[Crossref]

Olmeda, C. C.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

Orrit, M.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Patalay, R.

Paulo, P. M.

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

Paxton, W. F.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

Perez-Juste, J.

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

Petrova, H.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

Pini, R.

Podolskiy, V. A.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Poe, C.

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Ratto, F.

Ruijgrok, P. V.

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

Sader, J. E.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Saviot, L.

L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
[Crossref]

Sen, A.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

Shieh, D. B.

Siekkinen, A. R.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

St Angelo, S. K.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

Stamp, G. W.

Talbot, C. B.

Tan, Q.

Taylor, A. B.

Tchebotareva, A. L.

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

Vallée, F.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

van Dijk, M. A.

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Vasilantonakis, N.

Voisin, C.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

Wang, C. R. C.

Wang, E.

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

Wang, J.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Wang, T.

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

Wang, X.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

Wang, Y.

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

Warren, S.

Wei, C. W.

Wheaton, S.

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Wiley, B. J.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Wilson, O.

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Wu, X.

Wu, Y. N.

Wurtz, G. A.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Xia, Y.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Xie, G.

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47(1), 013001 (2014).
[Crossref]

Xu, N.

Xu, Q. H.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

Yang, Z.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Yin, X. G.

Yu, K.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

Zayats, A. V.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Zhang, J.

X. Wu, J. Zhang, and Q. Gong, “Metal-insulator-metal nanorod arrays for subwavelength imaging,” Opt. Express 17(4), 2818–2825 (2009).
[Crossref] [PubMed]

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

Zhang, Z.

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

Zhu, Y. Y.

Zijlstra, P.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

ACS Nano (1)

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

B. D. Busbee, S. O. Obare, and C. J. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” Adv. Mater. 15(5), 414–416 (2003).
[Crossref]

J. Am. Chem. Soc. (3)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126(41), 13424–13431 (2004).
[Crossref] [PubMed]

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125(48), 14925–14933 (2003).
[Crossref] [PubMed]

J. Chem. Phys. (3)

G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116(18), 8048–8055 (2002).
[Crossref]

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

J. Mater. Chem. (1)

H. Petrova, J. Perez-Juste, Z. Zhang, J. Zhang, T. Kosel, and G. V. Hartland, “Crystal structure dependence of the elastic constants of gold nanorods,” J. Mater. Chem. 16(40), 3957–3963 (2006).
[Crossref]

J. Non-Cryst. Solids (1)

L. Saviot, B. Champagnon, E. Duval, I. A. Kudriavtsev, and A. I. Ekimov, “Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses,” J. Non-Cryst. Solids 197(2-3), 238–246 (1996).
[Crossref]

J. Phys. Chem. B (4)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

X. Hu, W. Cheng, T. Wang, Y. Wang, E. Wang, and S. Dong, “Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films,” J. Phys. Chem. B 109(41), 19385–19389 (2005).
[Crossref] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

J. Phys. Chem. Lett. (1)

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47(1), 013001 (2014).
[Crossref]

Nano Lett. (3)

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Opt. Express (8)

C. P. Huang, X. G. Yin, H. Huang, and Y. Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17(8), 6407–6413 (2009).
[Crossref] [PubMed]

A. B. Taylor, P. Michaux, A. S. Mohsin, and J. W. Chon, “Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage,” Opt. Express 22(11), 13234–13243 (2014).
[Crossref] [PubMed]

P. C. Li, C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008).
[Crossref] [PubMed]

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

X. Wu, J. Zhang, and Q. Gong, “Metal-insulator-metal nanorod arrays for subwavelength imaging,” Opt. Express 17(4), 2818–2825 (2009).
[Crossref] [PubMed]

C. B. Talbot, R. Patalay, I. Munro, S. Warren, F. Ratto, P. Matteini, R. Pini, H. G. Breunig, K. König, A. C. Chu, G. W. Stamp, M. A. Neil, P. M. French, and C. Dunsby, “Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging,” Opt. Express 19(15), 13848–13861 (2011).
[Crossref] [PubMed]

N. Xu, B. Bai, Q. Tan, and G. Jin, “Accurate geometric characterization of gold nanorod ensemble by an inverse extinction/scattering spectroscopic method,” Opt. Express 21(18), 21639–21650 (2013).
[Crossref] [PubMed]

N. Xu, B. Bai, Q. Tan, and G. Jin, “Fast statistical measurement of aspect ratio distribution of gold nanorod ensembles by optical extinction spectroscopy,” Opt. Express 21(3), 2987–3000 (2013).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
[Crossref]

Phys. Rev. Lett. (1)

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Other (1)

D. R. Lide, Handbook of Chemistry and Physics (CRC, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 CW FWM experimental setup. ECL: extermal cavity laser; BS: beam spliter; MR: mirror; IRS: iris; APD: avalanche photodetector; LA: lock-in amplifier; L1: lens1 (20 cm focal length); L2: lens2 (4 cm focal length); DBRL: distributed Bragg reflector laser; PC: polarization controller; FC: fiber coupler; OSA: optical spectrum analyzer; BLR: blocker; OC: optical chopper; POL: polarizer; FPC: fiber-port collimator.
Fig. 2
Fig. 2 Extinction spectra of gold nanorods of three different aspect ratios in aqueous solution. The longitudinal LSPR peaks locate at 780, 800, and 830 nm for aspect ratios of 3.8, 4.0, and 4.3, respectively. The transverse LSPR peaks locate at 512 nm.
Fig. 3
Fig. 3 (a) SEM image of gold nanorods of a 3.8 aspect ratio obtained at 2 kV and 700000 × magnification. (b) Length distribution of gold nanorods. (c) Diameter distribution of gold nanospheres as the byproduct. (d) Width distribution of gold nanorods. Histograms were fitted by Gaussian distribution. The errors represent the standard deviation. The inset images are the SEM images of a single nanorod and nanosphere with a 25 nm scale bar.
Fig. 4
Fig. 4 (a) FWM signal of the 3.8 aspect-ratio nanorod sample as a function of the beat frequency between the ECL and DBR lasers. The error bar stands for the standard deviation calculated by taking 148 data points at each beat frequency. The 20.0 and 74.0 GHz resonance peaks correspond to the frequencies of the extensional modes of gold nanorods and nanospheres, respectively. The dashed line indicates the calculated resonant frequencies of 19.3 and 72.6 GHz according to the SEM results. The grey area indicates the broadening (3.6 GHz for the nanorod extensional mode and 25.6 GHz for the nanosphere extensional mode) induced mainly by size distribution. The inset images are the SEM images of a single nanorod and nanosphere with a 25 nm scale bar. (b) Comparison of experimental data with theoretical predictions for different aspect-ratio gold nanorod samples.

Tables (3)

Tables Icon

Table 1 Size information of three different aspect-ratio nanorod samples.

Tables Icon

Table 2 Fundamental acoustic vibrations of different aspect-ratio nanords.

Tables Icon

Table 3 Fundamental acoustic vibrations of coexisting nanospheres.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

υ ext,r = 2n+1 2L E ρ ,
υ br,r = φ ν l πW
FWHM=Δ υ ext,r = ΔL 2 L 2 E ρ = ΔL L υ ext,r
υ ext,s = ξ v l πD
υ br,s = η v l πD

Metrics