Abstract

Photonic structures encased by a permeable envelope give rise to iridescent blue color in the scales covering the male Hoplia coerulea beetle. This structure comprises a periodic porous multilayer. The color of these scales is known for changing from blue to green upon contact with water despite the presence of the envelope. This optical system has been referred to as a photonic cell due to the role of the envelope that mediates fluid exchanges with the surrounding environment. Following from previously studied liquid-induced changes in the color appearance of H. coerulea, we measured vapor-induced color changes in its appearance. This response to vapor exposure was marked by reflectance redshift and an increase in peak reflectance intensity. Different physico-chemical processes were investigated to explain the increase in reflectance intensity, a property not usually associated with vapor-induced optical signature changes. These simulations indicated the optical response arose from physisorption of a liquid film on the beetle scales followed by liquid penetration through the envelope and the filling of micropores within the body of the photonic structure.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structural coloration and photonic pseudogap in natural random close-packing photonic structures

B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi
Opt. Express 18(14) 14430-14438 (2010)

Structural color change in longhorn beetles Tmesisternus isabellae

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi
Opt. Express 17(18) 16183-16191 (2009)

Chirality in Rhomborhina Gigantea beetle

Suet Ying Ching, Guixin Li, Hoi Lam Tam, David T. P. Goh, Joseph K. L. Goh, and Kok Wai Cheah
Opt. Mater. Express 4(11) 2340-2345 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Berthier, Iridescences, les Couleurs Physiques des Insectes (Springer, 2003).
  2. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  3. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific Publishing Co, 2008).
  4. A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
    [Crossref] [PubMed]
  5. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
    [Crossref] [PubMed]
  6. D. W. Lee and J. B. Lowry, “Physical basis and ecological significance of iridescence in blue plants,” Nature 254(5495), 50–51 (1975).
    [Crossref]
  7. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
    [Crossref] [PubMed]
  8. L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
    [Crossref]
  9. J. H. Kim, J. H. Moon, S.-Y. Lee, and J. Park, “Biologically inspired humidity sensor based on three-dimensional photonic crystals,” Appl. Phys. Lett. 97(10), 103701 (2010).
    [Crossref]
  10. Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
    [Crossref]
  11. S. Mouchet, J.-F. Colomer, C. Vandenbem, O. Deparis, and J.-P. Vigneron, “Method for modeling additive color effect in photonic polycrystals with form anisotropic elements: the case of Entimus imperialis weevil,” Opt. Express 21(11), 13228–13240 (2013).
    [Crossref] [PubMed]
  12. A. Yoshida, “Antireflection of the butterfly and moth wings through microstructure,” Forma 17, 75–89 (2002).
  13. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. Lond., B 273(1587), 661–667 (2006).
    [Crossref] [PubMed]
  14. O. Deparis, N. Khuzayim, A. Parker, and J.-P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009).
    [Crossref] [PubMed]
  15. L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
    [Crossref]
  16. O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
    [Crossref]
  17. S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 99 (2007).
    [Crossref]
  18. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    [Crossref] [PubMed]
  19. H. Arwin, L. Fernández del Río, and K. Järrendahl, “Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata,” Thin Solid Films 571(3), 739–743 (2014).
    [Crossref]
  20. L. T. McDonald, E. D. Finlayson, and P. Vukusic, “Untwisting the polarization properties of light reflected by scarab beetles,” Proc. SPIE 9341, 93410K (2015).
    [Crossref]
  21. K. Kumazawa, S. Tanaka, K. Negita, and H. Tabata, “Fluorescence from wing of Morpho sulkowskyi butterfly,” Jpn. J. Appl. Phys. 33(1), 2119–2122 (1994).
    [Crossref]
  22. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
    [Crossref] [PubMed]
  23. E. Van Hooijdonk, C. Barthou, J.-P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics 5(1), 053525 (2011).
    [Crossref]
  24. E. Van Hooijdonk, S. Berthier, and J.-P. Vigneron, “Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): modeling by transfer-matrix optical simulations,” J. Appl. Phys. 112(11), 114702 (2012).
    [Crossref]
  25. E. Van Hooijdonk, C. Vandenbem, S. Berthier, and J.-P. Vigneron, “Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations,” Opt. Express 20(20), 22001–22011 (2012).
    [Crossref] [PubMed]
  26. V. L. Welch, E. Van Hooijdonk, N. Intrater, and J.-P. Vigneron, “Fluorescence in insects,” Proc. SPIE 8480, 848004 (2012).
    [Crossref]
  27. J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
    [Crossref] [PubMed]
  28. M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys. 10(3), 033014 (2008).
    [Crossref]
  29. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
    [Crossref] [PubMed]
  30. M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
    [Crossref] [PubMed]
  31. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
    [Crossref]
  32. R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
    [Crossref] [PubMed]
  33. L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
    [Crossref]
  34. M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
    [Crossref] [PubMed]
  35. W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
    [PubMed]
  36. C. W. Mason, “Structural Colors in Feathers. I,” J. Phys. Chem. 27(3), 201–251 (1922).
    [Crossref]
  37. C. W. Mason, “Structural Colors in Insects. I,” J. Phys. Chem. 30(3), 383–395 (1925).
    [Crossref]
  38. C. W. Mason, “Structural Colors in Insects. II,” J. Phys. Chem. 31(3), 321–354 (1926).
    [Crossref]
  39. C. W. Mason, “Structural Colors in Insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1926).
    [Crossref]
  40. C. M. Eliason and M. D. Shawkey, “Rapid, reversible response of iridescent feather color to ambient humidity,” Opt. Express 18(20), 21284–21292 (2010).
    [Crossref] [PubMed]
  41. Y. Gao, Q. Xia, G. Liao, and T. Shi, “Sensitivity analysis of a bioinspired refractive index based gas sensor,” J. Bionics Eng. 8(3), 323–334 (2011).
    [Crossref]
  42. X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
    [Crossref]
  43. S. R. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
    [Crossref]
  44. K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
    [Crossref]
  45. S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
    [Crossref]
  46. T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
    [Crossref]
  47. Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
    [Crossref]
  48. M. N. Ghazzal, O. Deparis, J. De Coninck, and E. M. Gaigneaux, “Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6202–6209 (2013).
    [Crossref]
  49. L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
    [Crossref] [PubMed]
  50. O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
    [Crossref]
  51. K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).
  52. G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales,” Opt. Express 22(19), 22649–22660 (2014).
    [Crossref] [PubMed]
  53. R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
    [Crossref] [PubMed]
  54. S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
    [Crossref] [PubMed]
  55. J.-P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061904 (2005).
    [Crossref] [PubMed]
  56. O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
    [Crossref]
  57. I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
    [Crossref] [PubMed]
  58. K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
    [Crossref] [PubMed]
  59. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005).
  60. B. Edlén, “The Refractive Index of Air,” Metrologia 2(2), 71–80 (1966).
    [Crossref]
  61. K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
    [Crossref]
  62. K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31(4), 315–316 (1994).
    [Crossref]
  63. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  64. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  65. I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
    [Crossref]
  66. Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
    [Crossref] [PubMed]
  67. I. Agnarsson, A. Dhinojwala, V. Sahni, and T. A. Blackledge, “Spider silk as a novel high performance biomimetic muscle driven by humidity,” J. Exp. Biol. 212(13), 1990–1994 (2009).
    [Crossref] [PubMed]
  68. R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
    [Crossref]
  69. Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
    [Crossref]
  70. M. Peesan, R. Rujiravanit, and P. Supaphol, “Characterisation of beta-chitin/poly(vinyl alcohol) blend films,” Polym. Test. 22(4), 381–387 (2003).
    [Crossref]
  71. O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
    [Crossref] [PubMed]

2016 (1)

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

2015 (2)

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

L. T. McDonald, E. D. Finlayson, and P. Vukusic, “Untwisting the polarization properties of light reflected by scarab beetles,” Proc. SPIE 9341, 93410K (2015).
[Crossref]

2014 (11)

H. Arwin, L. Fernández del Río, and K. Järrendahl, “Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata,” Thin Solid Films 571(3), 739–743 (2014).
[Crossref]

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
[Crossref]

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
[Crossref]

T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
[Crossref]

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales,” Opt. Express 22(19), 22649–22660 (2014).
[Crossref] [PubMed]

2013 (7)

S. Mouchet, J.-F. Colomer, C. Vandenbem, O. Deparis, and J.-P. Vigneron, “Method for modeling additive color effect in photonic polycrystals with form anisotropic elements: the case of Entimus imperialis weevil,” Opt. Express 21(11), 13228–13240 (2013).
[Crossref] [PubMed]

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
[Crossref]

M. N. Ghazzal, O. Deparis, J. De Coninck, and E. M. Gaigneaux, “Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6202–6209 (2013).
[Crossref]

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

2012 (5)

S. R. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

E. Van Hooijdonk, S. Berthier, and J.-P. Vigneron, “Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): modeling by transfer-matrix optical simulations,” J. Appl. Phys. 112(11), 114702 (2012).
[Crossref]

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

V. L. Welch, E. Van Hooijdonk, N. Intrater, and J.-P. Vigneron, “Fluorescence in insects,” Proc. SPIE 8480, 848004 (2012).
[Crossref]

E. Van Hooijdonk, C. Vandenbem, S. Berthier, and J.-P. Vigneron, “Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations,” Opt. Express 20(20), 22001–22011 (2012).
[Crossref] [PubMed]

2011 (5)

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

E. Van Hooijdonk, C. Barthou, J.-P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics 5(1), 053525 (2011).
[Crossref]

Y. Gao, Q. Xia, G. Liao, and T. Shi, “Sensitivity analysis of a bioinspired refractive index based gas sensor,” J. Bionics Eng. 8(3), 323–334 (2011).
[Crossref]

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
[Crossref]

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

2010 (3)

J. H. Kim, J. H. Moon, S.-Y. Lee, and J. Park, “Biologically inspired humidity sensor based on three-dimensional photonic crystals,” Appl. Phys. Lett. 97(10), 103701 (2010).
[Crossref]

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

C. M. Eliason and M. D. Shawkey, “Rapid, reversible response of iridescent feather color to ambient humidity,” Opt. Express 18(20), 21284–21292 (2010).
[Crossref] [PubMed]

2009 (6)

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
[Crossref] [PubMed]

I. Agnarsson, A. Dhinojwala, V. Sahni, and T. A. Blackledge, “Spider silk as a novel high performance biomimetic muscle driven by humidity,” J. Exp. Biol. 212(13), 1990–1994 (2009).
[Crossref] [PubMed]

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

O. Deparis, N. Khuzayim, A. Parker, and J.-P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009).
[Crossref] [PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
[Crossref] [PubMed]

2008 (4)

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[Crossref] [PubMed]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys. 10(3), 033014 (2008).
[Crossref]

O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
[Crossref]

2007 (3)

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 99 (2007).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

2006 (2)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. Lond., B 273(1587), 661–667 (2006).
[Crossref] [PubMed]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[Crossref] [PubMed]

2005 (2)

J.-P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061904 (2005).
[Crossref] [PubMed]

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[Crossref] [PubMed]

2003 (2)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

M. Peesan, R. Rujiravanit, and P. Supaphol, “Characterisation of beta-chitin/poly(vinyl alcohol) blend films,” Polym. Test. 22(4), 381–387 (2003).
[Crossref]

2002 (1)

A. Yoshida, “Antireflection of the butterfly and moth wings through microstructure,” Forma 17, 75–89 (2002).

2000 (1)

Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
[Crossref] [PubMed]

1997 (2)

Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
[Crossref]

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1994 (2)

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31(4), 315–316 (1994).
[Crossref]

K. Kumazawa, S. Tanaka, K. Negita, and H. Tabata, “Fluorescence from wing of Morpho sulkowskyi butterfly,” Jpn. J. Appl. Phys. 33(1), 2119–2122 (1994).
[Crossref]

1993 (1)

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

1975 (1)

D. W. Lee and J. B. Lowry, “Physical basis and ecological significance of iridescence in blue plants,” Nature 254(5495), 50–51 (1975).
[Crossref]

1973 (1)

1966 (1)

B. Edlén, “The Refractive Index of Air,” Metrologia 2(2), 71–80 (1966).
[Crossref]

1926 (2)

C. W. Mason, “Structural Colors in Insects. II,” J. Phys. Chem. 31(3), 321–354 (1926).
[Crossref]

C. W. Mason, “Structural Colors in Insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1926).
[Crossref]

1925 (1)

C. W. Mason, “Structural Colors in Insects. I,” J. Phys. Chem. 30(3), 383–395 (1925).
[Crossref]

1922 (1)

C. W. Mason, “Structural Colors in Feathers. I,” J. Phys. Chem. 27(3), 201–251 (1922).
[Crossref]

1907 (1)

I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
[Crossref]

Agnarsson, I.

I. Agnarsson, A. Dhinojwala, V. Sahni, and T. A. Blackledge, “Spider silk as a novel high performance biomimetic muscle driven by humidity,” J. Exp. Biol. 212(13), 1990–1994 (2009).
[Crossref] [PubMed]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. Lond., B 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Arwin, H.

H. Arwin, L. Fernández del Río, and K. Järrendahl, “Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata,” Thin Solid Films 571(3), 739–743 (2014).
[Crossref]

Bai, L.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Baji, Z.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

Bálint, Z.

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales,” Opt. Express 22(19), 22649–22660 (2014).
[Crossref] [PubMed]

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

Bálint, Zs.

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Barnes, J. A.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Barthou, C.

E. Van Hooijdonk, C. Barthou, J.-P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics 5(1), 053525 (2011).
[Crossref]

Baumberg, J. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Bay, A.

M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
[Crossref] [PubMed]

Berthier, S.

E. Van Hooijdonk, S. Berthier, and J.-P. Vigneron, “Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): modeling by transfer-matrix optical simulations,” J. Appl. Phys. 112(11), 114702 (2012).
[Crossref]

E. Van Hooijdonk, C. Vandenbem, S. Berthier, and J.-P. Vigneron, “Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations,” Opt. Express 20(20), 22001–22011 (2012).
[Crossref] [PubMed]

E. Van Hooijdonk, C. Barthou, J.-P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics 5(1), 053525 (2011).
[Crossref]

Birch, K. P.

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31(4), 315–316 (1994).
[Crossref]

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Biró, L. P.

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales,” Opt. Express 22(19), 22649–22660 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

Blackledge, T. A.

I. Agnarsson, A. Dhinojwala, V. Sahni, and T. A. Blackledge, “Spider silk as a novel high performance biomimetic muscle driven by humidity,” J. Exp. Biol. 212(13), 1990–1994 (2009).
[Crossref] [PubMed]

Bonam, R. K.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

Brady, P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Brown, R. S.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Bunning, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Chanzy, H.

Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
[Crossref] [PubMed]

Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
[Crossref]

Colomer, J.-F.

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
[Crossref]

S. Mouchet, J.-F. Colomer, C. Vandenbem, O. Deparis, and J.-P. Vigneron, “Method for modeling additive color effect in photonic polycrystals with form anisotropic elements: the case of Entimus imperialis weevil,” Opt. Express 21(11), 13228–13240 (2013).
[Crossref] [PubMed]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys. 10(3), 033014 (2008).
[Crossref]

J.-P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061904 (2005).
[Crossref] [PubMed]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

D’Alba, L.

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

De Coninck, J.

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

M. N. Ghazzal, O. Deparis, J. De Coninck, and E. M. Gaigneaux, “Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6202–6209 (2013).
[Crossref]

Dellieu, L.

O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
[Crossref]

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

Deng, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Deparis, O.

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
[Crossref]

S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
[Crossref]

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

M. N. Ghazzal, O. Deparis, J. De Coninck, and E. M. Gaigneaux, “Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6202–6209 (2013).
[Crossref]

S. Mouchet, J.-F. Colomer, C. Vandenbem, O. Deparis, and J.-P. Vigneron, “Method for modeling additive color effect in photonic polycrystals with form anisotropic elements: the case of Entimus imperialis weevil,” Opt. Express 21(11), 13228–13240 (2013).
[Crossref] [PubMed]

S. R. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

O. Deparis, N. Khuzayim, A. Parker, and J.-P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009).
[Crossref] [PubMed]

M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
[Crossref] [PubMed]

O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
[Crossref]

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[Crossref] [PubMed]

Dhinojwala, A.

I. Agnarsson, A. Dhinojwala, V. Sahni, and T. A. Blackledge, “Spider silk as a novel high performance biomimetic muscle driven by humidity,” J. Exp. Biol. 212(13), 1990–1994 (2009).
[Crossref] [PubMed]

Diao, Y. Y.

Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
[Crossref]

Dong, B. Q.

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Downs, M. J.

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31(4), 315–316 (1994).
[Crossref]

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Dumont, J.

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

Edlén, B.

B. Edlén, “The Refractive Index of Air,” Metrologia 2(2), 71–80 (1966).
[Crossref]

Eliason, C.

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

Eliason, C. M.

Ertz, D.

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

Faden, R. B.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Fang, X.

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

Fernández del Río, L.

H. Arwin, L. Fernández del Río, and K. Järrendahl, “Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata,” Thin Solid Films 571(3), 739–743 (2014).
[Crossref]

Finlayson, E. D.

L. T. McDonald, E. D. Finlayson, and P. Vukusic, “Untwisting the polarization properties of light reflected by scarab beetles,” Proc. SPIE 9341, 93410K (2015).
[Crossref]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. Lond., B 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Gaigneaux, E. M.

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

M. N. Ghazzal, O. Deparis, J. De Coninck, and E. M. Gaigneaux, “Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6202–6209 (2013).
[Crossref]

Gaill, F.

Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
[Crossref] [PubMed]

Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
[Crossref]

Gao, Y.

Y. Gao, Q. Xia, G. Liao, and T. Shi, “Sensitivity analysis of a bioinspired refractive index based gas sensor,” J. Bionics Eng. 8(3), 323–334 (2011).
[Crossref]

Ghazzal, M. N.

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

M. N. Ghazzal, O. Deparis, J. De Coninck, and E. M. Gaigneaux, “Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6202–6209 (2013).
[Crossref]

Ghiradella, H.

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Glover, B. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Goddard, G.

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Grande, J. C.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Gu, J.

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

Gu, Z.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Hale, G. M.

Hartley, J. G.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

Hooper, I.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[Crossref] [PubMed]

Huang, Y.

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

Ingram, A. L.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[Crossref] [PubMed]

Intrater, N.

V. L. Welch, E. Van Hooijdonk, N. Intrater, and J.-P. Vigneron, “Fluorescence in insects,” Proc. SPIE 8480, 848004 (2012).
[Crossref]

Jakab, E.

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Järrendahl, K.

H. Arwin, L. Fernández del Río, and K. Järrendahl, “Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata,” Thin Solid Films 571(3), 739–743 (2014).
[Crossref]

Jewell, S. A.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 99 (2007).
[Crossref]

Jia, L.

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

Jiang, T.

T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
[Crossref]

Kebaili, H.

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

Kertész, K.

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales,” Opt. Express 22(19), 22649–22660 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

Kértész, K.

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

Khuzayim, N.

O. Deparis, N. Khuzayim, A. Parker, and J.-P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009).
[Crossref] [PubMed]

Kim, J. H.

J. H. Kim, J. H. Moon, S.-Y. Lee, and J. Park, “Biologically inspired humidity sensor based on three-dimensional photonic crystals,” Appl. Phys. Lett. 97(10), 103701 (2010).
[Crossref]

Koop, J. A. H.

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Kumazawa, K.

K. Kumazawa, S. Tanaka, K. Negita, and H. Tabata, “Fluorescence from wing of Morpho sulkowskyi butterfly,” Jpn. J. Appl. Phys. 33(1), 2119–2122 (1994).
[Crossref]

Kun, A.

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

Larsen, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Le Tarte, L. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

Leblanc-Hotte, A.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Lee, D. W.

D. W. Lee and J. B. Lowry, “Physical basis and ecological significance of iridescence in blue plants,” Nature 254(5495), 50–51 (1975).
[Crossref]

Lee, S.-Y.

J. H. Kim, J. H. Moon, S.-Y. Lee, and J. Park, “Biologically inspired humidity sensor based on three-dimensional photonic crystals,” Appl. Phys. Lett. 97(10), 103701 (2010).
[Crossref]

Li, C.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Li, H.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Li, Y.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Liang, S.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Liao, G.

T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
[Crossref]

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
[Crossref]

Y. Gao, Q. Xia, G. Liao, and T. Shi, “Sensitivity analysis of a bioinspired refractive index based gas sensor,” J. Bionics Eng. 8(3), 323–334 (2011).
[Crossref]

Liu, F.

Liu, Q.

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

Liu, X. H.

Liu, X. Y.

Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
[Crossref]

Loock, H.-P.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Louette, P.

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

Lousse, V.

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

J.-P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061904 (2005).
[Crossref] [PubMed]

Lowry, J. B.

D. W. Lee and J. B. Lowry, “Physical basis and ecological significance of iridescence in blue plants,” Nature 254(5495), 50–51 (1975).
[Crossref]

Lucas, S.

S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
[Crossref]

O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
[Crossref]

Mackey, G.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Mason, C. W.

C. W. Mason, “Structural Colors in Insects. II,” J. Phys. Chem. 31(3), 321–354 (1926).
[Crossref]

C. W. Mason, “Structural Colors in Insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1926).
[Crossref]

C. W. Mason, “Structural Colors in Insects. I,” J. Phys. Chem. 30(3), 383–395 (1925).
[Crossref]

C. W. Mason, “Structural Colors in Feathers. I,” J. Phys. Chem. 27(3), 201–251 (1922).
[Crossref]

McDonald, L. T.

L. T. McDonald, E. D. Finlayson, and P. Vukusic, “Untwisting the polarization properties of light reflected by scarab beetles,” Proc. SPIE 9341, 93410K (2015).
[Crossref]

Moon, J. H.

J. H. Kim, J. H. Moon, S.-Y. Lee, and J. Park, “Biologically inspired humidity sensor based on three-dimensional photonic crystals,” Appl. Phys. Lett. 97(10), 103701 (2010).
[Crossref]

Mouchet, S.

Mouchet, S. R.

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
[Crossref]

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
[Crossref]

S. R. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

Moyroud, E.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Mu, Z.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Naik, R. R.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Negita, K.

K. Kumazawa, S. Tanaka, K. Negita, and H. Tabata, “Fluorescence from wing of Morpho sulkowskyi butterfly,” Jpn. J. Appl. Phys. 33(1), 2119–2122 (1994).
[Crossref]

Okano, T.

Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
[Crossref] [PubMed]

Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
[Crossref]

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Palacios, M.

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Palacios, M. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. Lond., B 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Park, J.

J. H. Kim, J. H. Moon, S.-Y. Lee, and J. Park, “Biologically inspired humidity sensor based on three-dimensional photonic crystals,” Appl. Phys. Lett. 97(10), 103701 (2010).
[Crossref]

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Parker, A.

O. Deparis, N. Khuzayim, A. Parker, and J.-P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009).
[Crossref] [PubMed]

Parker, A. R.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[Crossref] [PubMed]

Pasteels, J. M.

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

Peesan, M.

M. Peesan, R. Rujiravanit, and P. Supaphol, “Characterisation of beta-chitin/poly(vinyl alcohol) blend films,” Polym. Test. 22(4), 381–387 (2003).
[Crossref]

Peng, Z.

T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
[Crossref]

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
[Crossref]

Peter, Y.-A.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Piszter, G.

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales,” Opt. Express 22(19), 22649–22660 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Potyrailo, R. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Poulin, A.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Putaux, J.-L.

Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
[Crossref] [PubMed]

Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
[Crossref]

Querry, M. R.

Rassart, M.

M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
[Crossref] [PubMed]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys. 10(3), 033014 (2008).
[Crossref]

O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
[Crossref]

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[Crossref] [PubMed]

Reed, A.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Roberts, N. W.

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 99 (2007).
[Crossref]

Rowland, A. V.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Rudall, P. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Rujiravanit, R.

M. Peesan, R. Rujiravanit, and P. Supaphol, “Characterisation of beta-chitin/poly(vinyl alcohol) blend films,” Polym. Test. 22(4), 381–387 (2003).
[Crossref]

Sahni, V.

I. Agnarsson, A. Dhinojwala, V. Sahni, and T. A. Blackledge, “Spider silk as a novel high performance biomimetic muscle driven by humidity,” J. Exp. Biol. 212(13), 1990–1994 (2009).
[Crossref] [PubMed]

Saito, Y.

Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
[Crossref] [PubMed]

Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
[Crossref]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Sarrazin, M.

O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
[Crossref]

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

Saunders, J.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Schultz, T. D.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Seago, A. E.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Seldrum, T.

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Shawkey, M. D.

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

C. M. Eliason and M. D. Shawkey, “Rapid, reversible response of iridescent feather color to ambient humidity,” Opt. Express 18(20), 21284–21292 (2010).
[Crossref] [PubMed]

Shi, L.

Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
[Crossref]

Shi, T.

T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
[Crossref]

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
[Crossref]

Y. Gao, Q. Xia, G. Liao, and T. Shi, “Sensitivity analysis of a bioinspired refractive index based gas sensor,” J. Bionics Eng. 8(3), 323–334 (2011).
[Crossref]

Simonis, P.

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
[Crossref] [PubMed]

Sollas, I. B. J.

I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
[Crossref]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Starkey, T. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. Lond., B 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Steiner, U.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

St-Gelais, R.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Su, B.-L.

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
[Crossref]

Supaphol, P.

M. Peesan, R. Rujiravanit, and P. Supaphol, “Characterisation of beta-chitin/poly(vinyl alcohol) blend films,” Polym. Test. 22(4), 381–387 (2003).
[Crossref]

Tabarrant, T.

S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
[Crossref]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys. 10(3), 033014 (2008).
[Crossref]

Tabata, H.

K. Kumazawa, S. Tanaka, K. Negita, and H. Tabata, “Fluorescence from wing of Morpho sulkowskyi butterfly,” Jpn. J. Appl. Phys. 33(1), 2119–2122 (1994).
[Crossref]

Tamáska, I.

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

Tanaka, S.

K. Kumazawa, S. Tanaka, K. Negita, and H. Tabata, “Fluorescence from wing of Morpho sulkowskyi butterfly,” Jpn. J. Appl. Phys. 33(1), 2119–2122 (1994).
[Crossref]

Tang, Z.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Tian, Z.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Toh, G. W.

Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
[Crossref]

Van Hooijdonk, E.

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

V. L. Welch, E. Van Hooijdonk, N. Intrater, and J.-P. Vigneron, “Fluorescence in insects,” Proc. SPIE 8480, 848004 (2012).
[Crossref]

E. Van Hooijdonk, S. Berthier, and J.-P. Vigneron, “Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): modeling by transfer-matrix optical simulations,” J. Appl. Phys. 112(11), 114702 (2012).
[Crossref]

E. Van Hooijdonk, C. Vandenbem, S. Berthier, and J.-P. Vigneron, “Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations,” Opt. Express 20(20), 22001–22011 (2012).
[Crossref] [PubMed]

E. Van Hooijdonk, C. Barthou, J.-P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics 5(1), 053525 (2011).
[Crossref]

Vandenbem, C.

Vasudev, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Vértesy, Z.

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

G. Piszter, K. Kertész, Z. Vértesy, Z. Bálint, and L. P. Biró, “Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales,” Opt. Express 22(19), 22649–22660 (2014).
[Crossref] [PubMed]

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

Vertiatchikh, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Vigneron, J.-P.

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

S. Mouchet, J.-F. Colomer, C. Vandenbem, O. Deparis, and J.-P. Vigneron, “Method for modeling additive color effect in photonic polycrystals with form anisotropic elements: the case of Entimus imperialis weevil,” Opt. Express 21(11), 13228–13240 (2013).
[Crossref] [PubMed]

E. Van Hooijdonk, C. Vandenbem, S. Berthier, and J.-P. Vigneron, “Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations,” Opt. Express 20(20), 22001–22011 (2012).
[Crossref] [PubMed]

S. R. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

E. Van Hooijdonk, S. Berthier, and J.-P. Vigneron, “Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): modeling by transfer-matrix optical simulations,” J. Appl. Phys. 112(11), 114702 (2012).
[Crossref]

V. L. Welch, E. Van Hooijdonk, N. Intrater, and J.-P. Vigneron, “Fluorescence in insects,” Proc. SPIE 8480, 848004 (2012).
[Crossref]

E. Van Hooijdonk, C. Barthou, J.-P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics 5(1), 053525 (2011).
[Crossref]

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

O. Deparis, N. Khuzayim, A. Parker, and J.-P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009).
[Crossref] [PubMed]

M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
[Crossref] [PubMed]

O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
[Crossref]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys. 10(3), 033014 (2008).
[Crossref]

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[Crossref] [PubMed]

J.-P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061904 (2005).
[Crossref] [PubMed]

Vigneron, N.

J.-P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061904 (2005).
[Crossref] [PubMed]

Vignolini, S.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Vukusic, P.

L. T. McDonald, E. D. Finlayson, and P. Vukusic, “Untwisting the polarization properties of light reflected by scarab beetles,” Proc. SPIE 9341, 93410K (2015).
[Crossref]

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 99 (2007).
[Crossref]

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[Crossref] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Wang, T.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Wang, W.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

Wang, Z.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Welch, V.

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J.-P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[Crossref] [PubMed]

Welch, V. L.

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

V. L. Welch, E. Van Hooijdonk, N. Intrater, and J.-P. Vigneron, “Fluorescence in insects,” Proc. SPIE 8480, 848004 (2012).
[Crossref]

O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
[Crossref]

Windsor, D. M.

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

Wozny, J.

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Wu, W.

T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
[Crossref]

Xia, Q.

Y. Gao, Q. Xia, G. Liao, and T. Shi, “Sensitivity analysis of a bioinspired refractive index based gas sensor,” J. Bionics Eng. 8(3), 323–334 (2011).
[Crossref]

Xie, J.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Xie, Z.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Xu, W.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Yang, B.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Yang, X.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
[Crossref]

Yen, S.-H.

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

Yoshida, A.

A. Yoshida, “Antireflection of the butterfly and moth wings through microstructure,” Forma 17, 75–89 (2002).

Yuan, C.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Zalubovsky, S.

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Zhang, D.

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

Zhang, H.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Zhang, J.

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Zhang, W.

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

Zhao, Y.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Zheng, Y. M.

Zhong, Q.

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Zhong, S.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Zhou, J.

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Zi, J.

Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
[Crossref]

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
[Crossref] [PubMed]

Zorn, G.

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

Zuo, H.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
[Crossref]

ACS Nano (1)

L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, and Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS Nano 8(11), 11094–11100 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

Y. Y. Diao, X. Y. Liu, G. W. Toh, L. Shi, and J. Zi, “Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing,” Adv. Funct. Mater. 23(43), 5373–5380 (2013).
[Crossref]

Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, and B. Yang, “Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band,” Adv. Funct. Mater. 20(21), 3784–3790 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

O. Deparis, M. N. Ghazzal, P. Simonis, S. R. Mouchet, H. Kebaili, J. De Coninck, E. M. Gaigneaux, and J.-P. Vigneron, “Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings,” Appl. Phys. Lett. 104(2), 023704 (2014).
[Crossref]

J. H. Kim, J. H. Moon, S.-Y. Lee, and J. Park, “Biologically inspired humidity sensor based on three-dimensional photonic crystals,” Appl. Phys. Lett. 97(10), 103701 (2010).
[Crossref]

Appl. Surf. Sci. (1)

K. Kertész, G. Piszter, E. Jakab, Zs. Bálint, Z. Vértesy, and L. P. Biró, “Color change of Blue butterfly wing scales in an air – Vapor ambient,” Appl. Surf. Sci. 281, 49–53 (2013).
[Crossref]

Chem. Senses (1)

K. Kertész, G. Piszter, Z. Baji, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Vapor sensing on bare and modified blue butterfly wing scales,” Chem. Senses 4, 17 (2014).

Forma (1)

A. Yoshida, “Antireflection of the butterfly and moth wings through microstructure,” Forma 17, 75–89 (2002).

Int. J. Biol. Macromol. (1)

Y. Saito, T. Okano, F. Gaill, H. Chanzy, and J.-L. Putaux, “Structural data on the intra-crystalline swelling of β-chitin,” Int. J. Biol. Macromol. 28(1), 81–88 (2000).
[Crossref] [PubMed]

J. Appl. Phys. (2)

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J.-P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

E. Van Hooijdonk, S. Berthier, and J.-P. Vigneron, “Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): modeling by transfer-matrix optical simulations,” J. Appl. Phys. 112(11), 114702 (2012).
[Crossref]

J. Bionics Eng. (1)

Y. Gao, Q. Xia, G. Liao, and T. Shi, “Sensitivity analysis of a bioinspired refractive index based gas sensor,” J. Bionics Eng. 8(3), 323–334 (2011).
[Crossref]

J. Exp. Biol. (1)

I. Agnarsson, A. Dhinojwala, V. Sahni, and T. A. Blackledge, “Spider silk as a novel high performance biomimetic muscle driven by humidity,” J. Exp. Biol. 212(13), 1990–1994 (2009).
[Crossref] [PubMed]

J. Insect Sci. (1)

I. Tamáska, K. Kértész, Z. Vértesy, Z. Bálint, A. Kun, S.-H. Yen, and L. P. Biró, “Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes,” J. Insect Sci. 13(87), 87 (2013).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

M. N. Ghazzal, O. Deparis, J. De Coninck, and E. M. Gaigneaux, “Tailored refractive index of inorganic mesoporous mixed-oxide Bragg stacks with bio-inspired hygrochromic optical properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6202–6209 (2013).
[Crossref]

J. Nanophotonics (1)

E. Van Hooijdonk, C. Barthou, J.-P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics 5(1), 053525 (2011).
[Crossref]

J. Phys. Chem. (4)

C. W. Mason, “Structural Colors in Feathers. I,” J. Phys. Chem. 27(3), 201–251 (1922).
[Crossref]

C. W. Mason, “Structural Colors in Insects. I,” J. Phys. Chem. 30(3), 383–395 (1925).
[Crossref]

C. W. Mason, “Structural Colors in Insects. II,” J. Phys. Chem. 31(3), 321–354 (1926).
[Crossref]

C. W. Mason, “Structural Colors in Insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1926).
[Crossref]

J. R. Soc. Interface (1)

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

K. Kumazawa, S. Tanaka, K. Negita, and H. Tabata, “Fluorescence from wing of Morpho sulkowskyi butterfly,” Jpn. J. Appl. Phys. 33(1), 2119–2122 (1994).
[Crossref]

Laser Photonics Rev. (1)

L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev. 5(1), 27–51 (2011).
[Crossref]

Macromolecules (1)

Y. Saito, J.-L. Putaux, T. Okano, F. Gaill, and H. Chanzy, “Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin,” Macromolecules 30(13), 3867–3873 (1997).
[Crossref]

Mater. Sci. Eng. C (1)

K. Kertész, G. Piszter, E. Jakab, Z. Bálint, Z. Vértesy, and L. P. Biró, “Temperature and saturation dependence in the vapor sensing of butterfly wing scales,” Mater. Sci. Eng. C 39, 221–226 (2014).
[Crossref] [PubMed]

Mater. Today Proc. (1)

O. Deparis, S. R. Mouchet, L. Dellieu, J.-F. Colomer, and M. Sarrazin, “Nanostructured surfaces: bioinspiration for transparency, coloration and wettability,” Mater. Today Proc. 1S, 122–129 (2014).
[Crossref]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Metrologia (3)

B. Edlén, “The Refractive Index of Air,” Metrologia 2(2), 71–80 (1966).
[Crossref]

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31(4), 315–316 (1994).
[Crossref]

Nat. Commun. (1)

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6, 7959 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Nature (2)

D. W. Lee and J. B. Lowry, “Physical basis and ecological significance of iridescence in blue plants,” Nature 254(5495), 50–51 (1975).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

New J. Phys. (3)

S. A. Jewell, P. Vukusic, and N. W. Roberts, “Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi,” New J. Phys. 9(4), 99 (2007).
[Crossref]

M. Rassart, J.-F. Colomer, T. Tabarrant, and J.-P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” New J. Phys. 10(3), 033014 (2008).
[Crossref]

O. Deparis, M. Rassart, C. Vandenbem, V. L. Welch, J.-P. Vigneron, and S. Lucas, “Structurally tuned iridescent surfaces inspired by nature,” New J. Phys. 10(1), 013032 (2008).
[Crossref]

Opt. Express (6)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1502), 2465–2480 (2008).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

J.-P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007).
[Crossref] [PubMed]

O. Deparis, N. Khuzayim, A. Parker, and J.-P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009).
[Crossref] [PubMed]

M. Rassart, P. Simonis, A. Bay, O. Deparis, and J.-P. Vigneron, “Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031910 (2009).
[Crossref] [PubMed]

J.-P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061904 (2005).
[Crossref] [PubMed]

Polym. Test. (1)

M. Peesan, R. Rujiravanit, and P. Supaphol, “Characterisation of beta-chitin/poly(vinyl alcohol) blend films,” Polym. Test. 22(4), 381–387 (2003).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. A. Potyrailo, T. A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J. C. Grande, G. Zorn, G. Goddard, and S. Zalubovsky, “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response,” Proc. Natl. Acad. Sci. U.S.A. 110(39), 15567–15572 (2013).
[Crossref] [PubMed]

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Proc. R. Soc. Lond., B (2)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. Lond., B 273(1587), 661–667 (2006).
[Crossref] [PubMed]

I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907).
[Crossref]

Proc. SPIE (5)

S. R. Mouchet, B.-L. Su, T. Tabarrant, S. Lucas, and O. Deparis, “Hoplia coerulea, a porous natural photonic structure as template of optical vapour sensor,” Proc. SPIE 9127, 91270U (2014).
[Crossref]

S. R. Mouchet, O. Deparis, and J.-P. Vigneron, “Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere,” Proc. SPIE 8424, 842425 (2012).
[Crossref]

L. P. Biró, K. Kertész, Z. Vértesy, and Z. Bálint, “Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors,” Proc. SPIE 7057, 705706 (2008).
[Crossref]

L. T. McDonald, E. D. Finlayson, and P. Vukusic, “Untwisting the polarization properties of light reflected by scarab beetles,” Proc. SPIE 9341, 93410K (2015).
[Crossref]

V. L. Welch, E. Van Hooijdonk, N. Intrater, and J.-P. Vigneron, “Fluorescence in insects,” Proc. SPIE 8480, 848004 (2012).
[Crossref]

Sci. Rep. (2)

W. Wang, W. Zhang, X. Fang, Y. Huang, Q. Liu, J. Gu, and D. Zhang, “Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor,” Sci. Rep. 4, 5591 (2014).
[PubMed]

S. R. Mouchet, E. Van Hooijdonk, V. L. Welch, P. Louette, J.-F. Colomer, B.-L. Su, and O. Deparis, “Liquid-induced colour change in a beetle: the concept of a photonic cell,” Sci. Rep. 6, 19322 (2016).
[Crossref] [PubMed]

Science (2)

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[Crossref] [PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Sensors Actuat. A (2)

T. Jiang, Z. Peng, W. Wu, T. Shi, and G. Liao, “Gas sensing using hierarchical micro/nanostructures of Morpho buttery scales,” Sensors Actuat. A 213, 63–69 (2014).
[Crossref]

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling,” Sensors Actuat. A 167(2), 367–373 (2011).
[Crossref]

Sensors Actuat. B (1)

R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymerfunctionalized deformable Fabry-Perot interferometers,” Sensors Actuat. B 182, 45–52 (2013).
[Crossref]

Thin Solid Films (1)

H. Arwin, L. Fernández del Río, and K. Järrendahl, “Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata,” Thin Solid Films 571(3), 739–743 (2014).
[Crossref]

Zoology (Jena) (1)

M. D. Shawkey, L. D’Alba, J. Wozny, C. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011).
[Crossref] [PubMed]

Other (3)

S. Berthier, Iridescences, les Couleurs Physiques des Insectes (Springer, 2003).

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific Publishing Co, 2008).

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Photonic cell of the male H. coerulea beetle. (a) Its blue-violet iridescent color is due to a photonic structure located inside the scales (b) covering its elytra. Enclosed by a 100 nm-thick encasing envelope, the photonic structure (c, d) consists of a periodic multilayer comprising layers of cuticle material (mainly chitin) and macroporous cuticle material (chitin rods spaced by voids). Due to its chemical composition (i.e. the presence of salts) and its physico-chemical properties, the envelope enables the penetration of liquids such as water whereas it acts as a barrier for other liquids such as ethanol. (e) The photonic structure enclosed by a permeable envelope is regarded as a photonic cell. [Scale bars: (b) 100 µm; (c) 1 µm; (d) 1 µm].
Fig. 2
Fig. 2 Experimental set-up for measuring spectral variations of the samples’ reflection factors induced by vapor flow through the sealed measurement chamber.
Fig. 3
Fig. 3 a, d, g, j) Reflection factor spectra R( λ ) measured at 15°-incidence angle on a H. coerulea’s elytron in contact with water vapor in different flux ratios: 25% (a-c), 50% (d-f), 75% (g-i) and 100% (j-l). b, e, h, k) Differential spectra ΔR=R R 0 where R are spectra measured at a given flux ratio and different exposure times and R 0 is the spectrum measured just before vapor introduction into the measurement chamber – solid green curve: after exposure to vapor; solid blue curve: after complete drying. c, f, i, l) Variations of the peak wavelength λ peak of the reflection factor as a function of exposure time.
Fig. 4
Fig. 4 a, d, g, j) Reflection factor spectra R( λ ) measured at 15°-incidence angle on a H. coerulea’s elytron in contact with ethanol vapor in different flux ratios: 25% (a-c), 50% (d-f), 75% (g-i) and 100% (j-l). b, e, h, k) Differential spectra ΔR=R R 0 where R are spectra measured at a given flux ratio and different exposure times and R 0 is the spectrum measured just before vapor introduction into the measurement chamber – solid green curve: after exposure to vapor; solid blue curve: after complete drying. c, f, i, l) Variations of the peak wavelength λ peak of the reflection as a function of exposure time.
Fig. 5
Fig. 5 a) Simulated reflectance spectra (unpolarized light at 15°-incidence angle) of the modeled structure (insert) onto which a liquid film is adsorbed (thickness ranging from 0 nm to 15 nm). b) Differences ΔR=R R d film =0nm between the spectra shown in (a) and the reflectance spectrum for a modeled structure without adsorbed film (i.e. the solid blue curve in (a)).
Fig. 6
Fig. 6 a, c) Simulated reflectance spectra (unpolarized light at 15°-incidence angle) of the modeled structure (insert) with different swelling factors. All dimensions of the structure were multiplied by 1+α , with α ranging (a) from 0 to 0.1 in steps of 0.02 and (c) from 0 to 0.01 in steps of 0.002. b, d) Differences ΔR=R R α=0 between the spectra shown in (a, c) and the reflectance spectrum for the structure modeled without swelling (i.e. the blue curve in (a)).
Fig. 7
Fig. 7 a) Simulated reflectance spectra (unpolarized light at 15°-incidence angle) of the modeled structure (insert) as the refractive index of the macropores increases from 1.000 (dry air – solid blue curve) to 1.335 (water – solid yellow curve) and to 1.365 (ethanol – solid grey curve). b) Differences ΔR=R R dry between the reflectance spectra shown in (a) and the reflectance spectrum of the modeled structure in which the macropores are filled with dry air (i.e. the solid blue curve in (a)).
Fig. 8
Fig. 8 a) Simulated reflectance spectra (unpolarized light and a 15°-incidence angle) of the modeled structure (insert) when the refractive index of the cuticle material increases from 1.56 to 1.62 due to liquid infiltration within the micropores. b) Differences ΔR=R R 0 between the spectra shown in (a) and the reflectance spectrum for a modeled structure of which the micropores are filled with dry air (i.e., the blue curve in (a)).
Fig. 9
Fig. 9 Refractive index n m of cuticle material free of micropores as a function of the micropore filling fraction δ i calculated using a Maxwell-Garnett effective medium approximation for an effective refractive index ε cuticle, eff = 1.56 2 in the dry state ( ε i = 1.00 2 ) and different effective refractive indices ranging from ε cuticle, eff = 1.57 2 to ε cuticle, eff = 1.62 2 in the wet state ( ε i = 1.335 2 ).

Metrics