Abstract

Spectral polarization characteristics of short-length fiber Bragg gratings UV-written in a highly-birefringent spun-fiber have been investigated. Based on the analysis of the characteristics the technique for measuring the built-in linear phase birefringence as well as the spin period in this fiber type has been suggested. In this method the birefringence dispersion is excluded and therefore the built-in linear phase birefringence can be measured with an improved accuracy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of spun fibers with millimeter spin periods

Yong Wang, Chang-Qing Xu, and Viatcheslav Izraelian
Opt. Express 13(10) 3841-3851 (2005)

Spun fiber Raman amplifiers with reduced polarization impairments

Sergey Sergeyev, Sergei Popov, and Ari T. Friberg
Opt. Express 16(19) 14380-14389 (2008)

Effects of residual stress on polarization mode dispersion of fibers made with different types of spinning

Ming-Jun Li, Xin Chen, and Daniel A. Nolan
Opt. Lett. 29(5) 448-450 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]
  2. A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
    [Crossref]
  3. H. C. Huang, “Practical circular-polarization-maintaining optical fiber,” Appl. Opt. 36(27), 6968–6975 (1997).
    [Crossref] [PubMed]
  4. H. C. Huang, “Fiber-optic analogs of bulk-optic wave plates,” Appl. Opt. 36(18), 4241–4258 (1997).
    [Crossref] [PubMed]
  5. O. V. Ivanov, “Fabrication of long-period fiber gratings by twisting a standard single-mode fiber,” Opt. Lett. 30(24), 3290–3292 (2005).
    [Crossref] [PubMed]
  6. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
    [Crossref] [PubMed]
  7. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [Crossref]
  8. Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
    [Crossref]
  9. V. M. Churikov, V. I. Kopp, and A. Z. Genack, “Chiral diffraction gratings in twisted microstructured fibers,” Opt. Lett. 35(3), 342–344 (2010).
    [Crossref] [PubMed]
  10. M. J. Li and D. A. Nolan, “Fiber spin-profile designs for producing fibers with low polarization mode dispersion,” Opt. Lett. 23(21), 1659–1661 (1998).
    [Crossref] [PubMed]
  11. R. E. Schuh and X. Shan, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” J. Lightwave Technol. 16(9), 1583–1588 (1998).
    [Crossref]
  12. R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [Crossref]
  13. V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
    [Crossref]
  14. Ya. V. Przhiyalkovsky, S. K. Morshnev, N. I. Starostin, and V. P. Gubin, “Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre,” Quantum Electron. 44(10), 957–964 (2014).
    [Crossref]
  15. K. Kikuchi and T. Okoshi, “Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers,” Opt. Lett. 8(2), 122–123 (1983).
    [Crossref] [PubMed]
  16. S. K. Morshnev, V. P. Gubin, Ya. V. Przhiyalkovsky, and N. I. Starostin, “Temperature dependences of phase and group birefringence in spun fibres,” Quantum Electron. 43(12), 1143–1148 (2013).
    [Crossref]
  17. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
    [Crossref] [PubMed]
  18. Y. Wang, C. Q. Xu, and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17(6), 1220–1222 (2005).
    [Crossref]
  19. Y. Wang, C. Q. Xu, and V. Izraelian, “Characteristics of fiber Bragg gratings in spun fibers,” Proc. SPIE 5577, 262–272 (2004).
    [Crossref]
  20. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]
  21. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
    [Crossref]
  22. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).
  23. I. Abe, I. Abe, H. J. Kalinowski, R. Nogueira, J. L. Pinto, and O. Frazão, “Production and characterisation of Bragg gratings written in high-birefringence fibre optics,” IEE Proc. Circuits Dev. Systems 150(6), 495–500 (2003).
    [Crossref]
  24. Y. Wang, C. Q. Xu, and V. Izraelian, “Characterization of spun fibers with millimeter spin periods,” Opt. Express 13(10), 3841–3851 (2005).
    [Crossref] [PubMed]
  25. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [Crossref]

2014 (1)

Ya. V. Przhiyalkovsky, S. K. Morshnev, N. I. Starostin, and V. P. Gubin, “Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre,” Quantum Electron. 44(10), 957–964 (2014).
[Crossref]

2013 (1)

S. K. Morshnev, V. P. Gubin, Ya. V. Przhiyalkovsky, and N. I. Starostin, “Temperature dependences of phase and group birefringence in spun fibres,” Quantum Electron. 43(12), 1143–1148 (2013).
[Crossref]

2010 (1)

2009 (1)

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

2006 (1)

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

2005 (3)

2004 (2)

Y. Wang, C. Q. Xu, and V. Izraelian, “Characteristics of fiber Bragg gratings in spun fibers,” Proc. SPIE 5577, 262–272 (2004).
[Crossref]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

2001 (1)

1998 (2)

1997 (2)

1994 (2)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
[Crossref]

1989 (1)

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

1983 (3)

1981 (1)

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[Crossref]

1979 (1)

Barlow, A. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[Crossref]

Chamorovskiy, Y. K.

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

Chamorovsky, Yu. K.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Chao, N.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Chern, G. W.

Churikov, V. M.

V. M. Churikov, V. I. Kopp, and A. Z. Genack, “Chiral diffraction gratings in twisted microstructured fibers,” Opt. Lett. 35(3), 342–344 (2010).
[Crossref] [PubMed]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Erdogan, T.

Genack, A. Z.

V. M. Churikov, V. I. Kopp, and A. Z. Genack, “Chiral diffraction gratings in twisted microstructured fibers,” Opt. Lett. 35(3), 342–344 (2010).
[Crossref] [PubMed]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Gubin, V. P.

Ya. V. Przhiyalkovsky, S. K. Morshnev, N. I. Starostin, and V. P. Gubin, “Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre,” Quantum Electron. 44(10), 957–964 (2014).
[Crossref]

S. K. Morshnev, V. P. Gubin, Ya. V. Przhiyalkovsky, and N. I. Starostin, “Temperature dependences of phase and group birefringence in spun fibres,” Quantum Electron. 43(12), 1143–1148 (2013).
[Crossref]

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Hadley, M. R.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[Crossref]

Huang, H. C.

Isaev, V. A.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Ivanov, O. V.

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Izraelian, V.

Y. Wang, C. Q. Xu, and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17(6), 1220–1222 (2005).
[Crossref]

Y. Wang, C. Q. Xu, and V. Izraelian, “Characterization of spun fibers with millimeter spin periods,” Opt. Express 13(10), 3841–3851 (2005).
[Crossref] [PubMed]

Y. Wang, C. Q. Xu, and V. Izraelian, “Characteristics of fiber Bragg gratings in spun fibers,” Proc. SPIE 5577, 262–272 (2004).
[Crossref]

Kikuchi, K.

Kopp, V. I.

V. M. Churikov, V. I. Kopp, and A. Z. Genack, “Chiral diffraction gratings in twisted microstructured fibers,” Opt. Lett. 35(3), 342–344 (2010).
[Crossref] [PubMed]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Laming, R.

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

Li, M. J.

Lin, C. Y.

Mansfield, R. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[Crossref]

Mizrahi, V.

Morshnev, S. K.

Ya. V. Przhiyalkovsky, S. K. Morshnev, N. I. Starostin, and V. P. Gubin, “Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre,” Quantum Electron. 44(10), 957–964 (2014).
[Crossref]

S. K. Morshnev, V. P. Gubin, Ya. V. Przhiyalkovsky, and N. I. Starostin, “Temperature dependences of phase and group birefringence in spun fibres,” Quantum Electron. 43(12), 1143–1148 (2013).
[Crossref]

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Neugroschl, D.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Nikitov, S. A.

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

Nolan, D. A.

Okoshi, T.

Oussov, A. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Payne, D. N.

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[Crossref]

Przhiyalkovsky, Ya. V.

Ya. V. Przhiyalkovsky, S. K. Morshnev, N. I. Starostin, and V. P. Gubin, “Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre,” Quantum Electron. 44(10), 957–964 (2014).
[Crossref]

S. K. Morshnev, V. P. Gubin, Ya. V. Przhiyalkovsky, and N. I. Starostin, “Temperature dependences of phase and group birefringence in spun fibres,” Quantum Electron. 43(12), 1143–1148 (2013).
[Crossref]

Rashleigh, S. C.

S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
[Crossref] [PubMed]

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[Crossref]

Ryabko, M. V.

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

Sazonov, A. I.

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Schuh, R. E.

Shan, X.

Simon, A.

Singer, J.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Starostin, N. I.

Ya. V. Przhiyalkovsky, S. K. Morshnev, N. I. Starostin, and V. P. Gubin, “Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre,” Quantum Electron. 44(10), 957–964 (2014).
[Crossref]

S. K. Morshnev, V. P. Gubin, Ya. V. Przhiyalkovsky, and N. I. Starostin, “Temperature dependences of phase and group birefringence in spun fibres,” Quantum Electron. 43(12), 1143–1148 (2013).
[Crossref]

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Ulrich, R.

Vorob’ev, I. L.

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

Wang, L. A.

Wang, Y.

Y. Wang, C. Q. Xu, and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17(6), 1220–1222 (2005).
[Crossref]

Y. Wang, C. Q. Xu, and V. Izraelian, “Characterization of spun fibers with millimeter spin periods,” Opt. Express 13(10), 3841–3851 (2005).
[Crossref] [PubMed]

Y. Wang, C. Q. Xu, and V. Izraelian, “Characteristics of fiber Bragg gratings in spun fibers,” Proc. SPIE 5577, 262–272 (2004).
[Crossref]

Xu, C. Q.

Y. Wang, C. Q. Xu, and V. Izraelian, “Characterization of spun fibers with millimeter spin periods,” Opt. Express 13(10), 3841–3851 (2005).
[Crossref] [PubMed]

Y. Wang, C. Q. Xu, and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17(6), 1220–1222 (2005).
[Crossref]

Y. Wang, C. Q. Xu, and V. Izraelian, “Characteristics of fiber Bragg gratings in spun fibers,” Proc. SPIE 5577, 262–272 (2004).
[Crossref]

Appl. Opt. (3)

Electron. Lett. (1)

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Wang, C. Q. Xu, and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17(6), 1220–1222 (2005).
[Crossref]

J. Lightwave Technol. (5)

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[Crossref]

R. E. Schuh and X. Shan, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” J. Lightwave Technol. 16(9), 1583–1588 (1998).
[Crossref]

C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. K. Chamorovskiy, N. I. Starostin, M. V. Ryabko, A. I. Sazonov, S. K. Morshnev, V. P. Gubin, I. L. Vorob’ev, and S. A. Nikitov, “Miniature microstructured fiber coil with high magneto-optical sensitivity,” Opt. Commun. 282(23), 4618–4621 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (1)

Y. Wang, C. Q. Xu, and V. Izraelian, “Characteristics of fiber Bragg gratings in spun fibers,” Proc. SPIE 5577, 262–272 (2004).
[Crossref]

Quantum Electron. (3)

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, and A. I. Oussov, “Use of Spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Ya. V. Przhiyalkovsky, S. K. Morshnev, N. I. Starostin, and V. P. Gubin, “Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre,” Quantum Electron. 44(10), 957–964 (2014).
[Crossref]

S. K. Morshnev, V. P. Gubin, Ya. V. Przhiyalkovsky, and N. I. Starostin, “Temperature dependences of phase and group birefringence in spun fibres,” Quantum Electron. 43(12), 1143–1148 (2013).
[Crossref]

Science (1)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Other (2)

R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).

I. Abe, I. Abe, H. J. Kalinowski, R. Nogueira, J. L. Pinto, and O. Frazão, “Production and characterisation of Bragg gratings written in high-birefringence fibre optics,” IEE Proc. Circuits Dev. Systems 150(6), 495–500 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Evolution of orthogonal linear polarization states in a HiBi spun fiber with σ = 0.2 (see text for details).
Fig. 2
Fig. 2 Spatial distributions of effective refractive indices for the orthogonal linear polarization modes in a HiBi spun fiber.
Fig. 3
Fig. 3 Transmission spectra of the six successive FBGs of different length.
Fig. 4
Fig. 4 Optical scheme of the experimental setup used for the investigation of the spectral polarization properties of the FBGs written in the HiBi spun fiber. P – polarizer, PC – polarization controller, C – fiber circulator, BBS – broad band erbium-doped fiber source, OSA – optical spectrum analyzer.
Fig. 5
Fig. 5 Experimental (top) and calculated (bottom) reflection spectra obtained for FBGs with length of 0.4 (a), 1.9 (b) and 2.9 (c) mm. Solid (dotted) curves correspond to the linear polarization state directed along the slow (fast) birefringence axis at the FBG center.
Fig. 6
Fig. 6 The experimental (symbols) and calculated (solid curve) dependences of the polarization sensitivity of the first minimum in the FBG reflection spectrum on the FBG length.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B= n s n f = Δλ λ ( nλ dn dλ )= Δλ λ n gr ,
n( z )= n 0 ± B 2 cos( 4π L s z ),( L g /2<z< L g /2),

Metrics