Abstract

Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis

Zhangjun Wang, Zhishen Liu, Liping Liu, Songhua Wu, Bingyi Liu, Zhigang Li, and Xinzhao Chu
Appl. Opt. 49(36) 6960-6978 (2010)

Coherent Doppler lidar signal spectrum with wind turbulence

Rod Frehlich and Larry Cornman
Appl. Opt. 38(36) 7456-7466 (1999)

References

  • View by:
  • |
  • |
  • |

  1. S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
    [Crossref]
  2. I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
    [Crossref]
  3. F. B. Amar, M. Elamouri, and R. Dhifaoui, “Energy assessment of the first wind farm section of Sidi Daoud, Tunisia,” Renew. Energy A 33(10), 2311–2321 (2008).
    [Crossref]
  4. R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
    [Crossref]
  5. U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
    [Crossref]
  6. R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
    [Crossref]
  7. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007). (P. Artaxo, “Changes in Atmospheric Constituents and in Radiative Forcing,” https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf .)
  8. F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics, part I: one-dimensional scanning,” Wind Energy A 13(1), 51–61 (2010).
    [Crossref]
  9. J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
    [Crossref]
  10. H. Jørgensen, T. Mikkelsen, J. Mann, D. Bryce, A. Coffey, M. Harris, and D. Smith,“Site wind field determination using a CW Doppler Lidar- comparison with cup anemometers at Risø,” in The Science of Making Torque from Wind (European Wind Energy Association, 2004), pp. 261–266.
  11. Y. Käsler, S. Rahm, R. Simmet, and M. Kuhn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
    [Crossref]
  12. G. Iungo, Y. Wu, and F. Porteagel, “Field Measurements of Wind Turbine Wakes with Lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
    [Crossref]
  13. G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
    [Crossref]
  14. R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
    [Crossref]
  15. S. Wu, J. Yin, B. Liu, and J. Liu, “Wind Turbine Wake Visualization by Doppler Lidar,” in Light, Energy and the Environment 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper EM3A.4.
    [Crossref]
  16. R. L. Schwiesow, F. Köpp, and C. Werner, “Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques,” J. Atmos. Ocean. Technol. 2(1), 3–14 (1985).
    [Crossref]
  17. Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
    [Crossref]
  18. Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
    [Crossref] [PubMed]
  19. Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
    [Crossref]
  20. Z. Wang, Z. Liu, L. Liu, S. Wu, B. Liu, Z. Li, and X. Chu, “Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis,” Appl. Opt. 49(36), 6960–6978 (2010).
    [Crossref] [PubMed]
  21. V. Banakh, V. Bodaruev, and I. Smalikho, “Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data,” Atmos. Oceanic Opt. 10, 957–965 (1997).
  22. R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
    [Crossref]
  23. R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
    [Crossref]
  24. A. Sathe and J. Mann, “A review of turbulence measurements using ground-based wind lidars,” Atmos. Meas. Tech. 6(11), 3147–3167 (2013).
    [Crossref]
  25. J. O. Hinze and J. Hinze, Turbulence: an introduction to its mechanism and theory (McGraw-Hill New York, 1959).
  26. D. H. Lenschow and L. Kristensen, “Applications of dual aircraft formation flights,” J. Atmos. Ocean. Technol. 5(6), 715–726 (1988).
    [Crossref]
  27. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Bound. -Layer Meteor. 86(2), 233–256 (1998).
    [Crossref]
  28. R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
    [Crossref]

2015 (1)

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

2013 (4)

G. Iungo, Y. Wu, and F. Porteagel, “Field Measurements of Wind Turbine Wakes with Lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

A. Sathe and J. Mann, “A review of turbulence measurements using ground-based wind lidars,” Atmos. Meas. Tech. 6(11), 3147–3167 (2013).
[Crossref]

2012 (1)

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

2011 (1)

J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
[Crossref]

2010 (3)

Y. Käsler, S. Rahm, R. Simmet, and M. Kuhn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics, part I: one-dimensional scanning,” Wind Energy A 13(1), 51–61 (2010).
[Crossref]

Z. Wang, Z. Liu, L. Liu, S. Wu, B. Liu, Z. Li, and X. Chu, “Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis,” Appl. Opt. 49(36), 6960–6978 (2010).
[Crossref] [PubMed]

2009 (1)

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

2008 (2)

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
[Crossref] [PubMed]

F. B. Amar, M. Elamouri, and R. Dhifaoui, “Energy assessment of the first wind farm section of Sidi Daoud, Tunisia,” Renew. Energy A 33(10), 2311–2321 (2008).
[Crossref]

2007 (1)

2006 (3)

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
[Crossref]

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

2002 (1)

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

1998 (1)

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Bound. -Layer Meteor. 86(2), 233–256 (1998).
[Crossref]

1997 (3)

V. Banakh, V. Bodaruev, and I. Smalikho, “Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data,” Atmos. Oceanic Opt. 10, 957–965 (1997).

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
[Crossref]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
[Crossref]

1988 (2)

U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
[Crossref]

D. H. Lenschow and L. Kristensen, “Applications of dual aircraft formation flights,” J. Atmos. Ocean. Technol. 5(6), 715–726 (1988).
[Crossref]

1985 (1)

R. L. Schwiesow, F. Köpp, and C. Werner, “Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques,” J. Atmos. Ocean. Technol. 2(1), 3–14 (1985).
[Crossref]

Alvarez, R. J.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Amar, F. B.

F. B. Amar, M. Elamouri, and R. Dhifaoui, “Energy assessment of the first wind farm section of Sidi Daoud, Tunisia,” Renew. Energy A 33(10), 2311–2321 (2008).
[Crossref]

Ando, T.

Asaka, K.

Asimakopoulos, D. N.

U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
[Crossref]

Balsley, B.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
[Crossref]

Banakh, V.

V. Banakh, V. Bodaruev, and I. Smalikho, “Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data,” Atmos. Oceanic Opt. 10, 957–965 (1997).

Banakh, V. A.

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

Banta, R. M.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

Barr, K.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

Barthelmie, R.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Barthelmie, R. J.

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Beyon, J.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Bi, D. C.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Bingol, F.

J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
[Crossref]

Bingöl, F.

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics, part I: one-dimensional scanning,” Wind Energy A 13(1), 51–61 (2010).
[Crossref]

Bodaruev, V.

V. Banakh, V. Bodaruev, and I. Smalikho, “Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data,” Atmos. Oceanic Opt. 10, 957–965 (1997).

Brewer, W. A.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

Calhoun, R.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

Chen, W. B.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
[Crossref]

Chen, Y. B.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Choukulkar, A.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

Chu, X.

Cornman, L.

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

Dhifaoui, R.

F. B. Amar, M. Elamouri, and R. Dhifaoui, “Energy assessment of the first wind farm section of Sidi Daoud, Tunisia,” Renew. Energy A 33(10), 2311–2321 (2008).
[Crossref]

Elamouri, M.

F. B. Amar, M. Elamouri, and R. Dhifaoui, “Energy assessment of the first wind farm section of Sidi Daoud, Tunisia,” Renew. Energy A 33(10), 2311–2321 (2008).
[Crossref]

Fine, J.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

Folkerts, L.

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Frandsen, S.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Frandsen, S. T.

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Frehlich, R.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
[Crossref]

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Bound. -Layer Meteor. 86(2), 233–256 (1998).
[Crossref]

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
[Crossref]

Hair, J. W.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
[Crossref]

Hannon, S. M.

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Bound. -Layer Meteor. 86(2), 233–256 (1998).
[Crossref]

Hardesty, R. M.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Helmis, C. G.

U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
[Crossref]

Henderson, S. W.

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Bound. -Layer Meteor. 86(2), 233–256 (1998).
[Crossref]

Hirano, Y.

Högström, U.

U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
[Crossref]

Højstrup, J.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Iungo, G.

G. Iungo, Y. Wu, and F. Porteagel, “Field Measurements of Wind Turbine Wakes with Lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

Jensen, M. L.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
[Crossref]

Kambezidis, H.

U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
[Crossref]

Kameyama, S.

Käsler, Y.

Y. Käsler, S. Rahm, R. Simmet, and M. Kuhn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

Kavaya, M.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Kelley, N. D.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

Koch, G.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Köpp, F.

R. L. Schwiesow, F. Köpp, and C. Werner, “Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques,” J. Atmos. Ocean. Technol. 2(1), 3–14 (1985).
[Crossref]

Krishnamurthy, R.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

Kristensen, L.

D. H. Lenschow and L. Kristensen, “Applications of dual aircraft formation flights,” J. Atmos. Ocean. Technol. 5(6), 715–726 (1988).
[Crossref]

Kuhn, M.

J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
[Crossref]

Y. Käsler, S. Rahm, R. Simmet, and M. Kuhn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

Lange, B.

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Larsen, G.

J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
[Crossref]

Larsen, G. C.

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics, part I: one-dimensional scanning,” Wind Energy A 13(1), 51–61 (2010).
[Crossref]

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Larsen, S.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Lenschow, D. H.

D. H. Lenschow and L. Kristensen, “Applications of dual aircraft formation flights,” J. Atmos. Ocean. Technol. 5(6), 715–726 (1988).
[Crossref]

Li, R. Z.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Li, Z.

Li, Z. G.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
[Crossref] [PubMed]

Liu, B.

Liu, B. Y.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
[Crossref] [PubMed]

Liu, L.

Liu, Z.

Liu, Z. S.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
[Crossref] [PubMed]

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
[Crossref]

Lundquist, J. K.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

Mann, J.

A. Sathe and J. Mann, “A review of turbulence measurements using ground-based wind lidars,” Atmos. Meas. Tech. 6(11), 3147–3167 (2013).
[Crossref]

J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
[Crossref]

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics, part I: one-dimensional scanning,” Wind Energy A 13(1), 51–61 (2010).
[Crossref]

Meillier, Y.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
[Crossref]

Modlin, E.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Oliver, A.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

Petros, M.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Petzar, P.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Pichugina, Y. L.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

Porteagel, F.

G. Iungo, Y. Wu, and F. Porteagel, “Field Measurements of Wind Turbine Wakes with Lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

Pryor, S.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Pryor, S. C.

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Rados, K.

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Rahm, S.

Y. Käsler, S. Rahm, R. Simmet, and M. Kuhn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

Rathmann, O.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Sandberg, S. P.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Sathe, A.

A. Sathe and J. Mann, “A review of turbulence measurements using ground-based wind lidars,” Atmos. Meas. Tech. 6(11), 3147–3167 (2013).
[Crossref]

Schepers, G.

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Schwiesow, R. L.

R. L. Schwiesow, F. Köpp, and C. Werner, “Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques,” J. Atmos. Ocean. Technol. 2(1), 3–14 (1985).
[Crossref]

Sharman, R.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
[Crossref]

She, C. Y.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
[Crossref]

Simmet, R.

Y. Käsler, S. Rahm, R. Simmet, and M. Kuhn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

Smalikho, I.

V. Banakh, V. Bodaruev, and I. Smalikho, “Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data,” Atmos. Oceanic Opt. 10, 957–965 (1997).

Smalikho, I. N.

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

Smedman, A.

U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
[Crossref]

Thøgersen, M.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Trujillo, J.

J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
[Crossref]

Wadaka, S.

Wang, Z.

Wang, Z. J.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
[Crossref] [PubMed]

Weickmann, A. M.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Werner, C.

R. L. Schwiesow, F. Köpp, and C. Werner, “Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques,” J. Atmos. Ocean. Technol. 2(1), 3–14 (1985).
[Crossref]

Woll, S.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Wu, S.

Wu, S. H.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li, and Z. J. Wang, “High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,” Opt. Lett. 33(13), 1485–1487 (2008).
[Crossref] [PubMed]

Wu, Y.

G. Iungo, Y. Wu, and F. Porteagel, “Field Measurements of Wind Turbine Wakes with Lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

Yang, Y. Q.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Yu, J.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Zhang, T. L.

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
[Crossref]

Zhang, X.

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, “An incoherent Doppler Lidar for ground-based atmospheric wind profiling,” Appl. Phys. B 64(5), 561–566 (1997).
[Crossref]

Atmos. Environ. A (1)

U. Högström, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, “A field study of the wake behind a 2MW wind turbine,” Atmos. Environ. A 22(4), 803–820 (1988).
[Crossref]

Atmos. Meas. Tech. (1)

A. Sathe and J. Mann, “A review of turbulence measurements using ground-based wind lidars,” Atmos. Meas. Tech. 6(11), 3147–3167 (2013).
[Crossref]

Atmos. Oceanic Opt. (1)

V. Banakh, V. Bodaruev, and I. Smalikho, “Estimation of the turbulence energy dissipation rate from the pulsed Doppler lidar data,” Atmos. Oceanic Opt. 10, 957–965 (1997).

Bound. -Layer Meteor. (1)

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Bound. -Layer Meteor. 86(2), 233–256 (1998).
[Crossref]

J. Appl. Meteorol. Climatol. (1)

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorol. Climatol. 45(6), 821–837 (2006).
[Crossref]

J. Appl. Remote Sens. (1)

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

J. Atmos. Ocean. Technol. (7)

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

R. L. Schwiesow, F. Köpp, and C. Werner, “Comparison of CW-lidar-measured wind values obtained by full conical scan, conical sector scan and two-point techniques,” J. Atmos. Ocean. Technol. 2(1), 3–14 (1985).
[Crossref]

D. H. Lenschow and L. Kristensen, “Applications of dual aircraft formation flights,” J. Atmos. Ocean. Technol. 5(6), 715–726 (1988).
[Crossref]

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
[Crossref]

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

Y. Käsler, S. Rahm, R. Simmet, and M. Kuhn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

G. Iungo, Y. Wu, and F. Porteagel, “Field Measurements of Wind Turbine Wakes with Lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

J. Atmos. Oceanic Technol. A (2)

I. N. Smalikho, V. A. Banakh, Y. L. Pichugina, W. A. Brewer, R. M. Banta, J. K. Lundquist, and N. D. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Oceanic Technol. A 30(11), 2554–2570 (2013).
[Crossref]

R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C. Pryor, B. Lange, and G. Schepers, “Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar,” J. Atmos. Oceanic Technol. A 23(7), 888–901 (2006).
[Crossref]

Opt. Eng. (1)

Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li, and Y. Q. Yang, “Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,” Opt. Eng. 48(6), 066002 (2009).
[Crossref]

Opt. Lett. (1)

Renew. Energy A (1)

F. B. Amar, M. Elamouri, and R. Dhifaoui, “Energy assessment of the first wind farm section of Sidi Daoud, Tunisia,” Renew. Energy A 33(10), 2311–2321 (2008).
[Crossref]

Wind Energy (Chichester Engl.) (1)

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energy (Chichester Engl.) 16(2), 189–206 (2013).
[Crossref]

Wind Energy A (3)

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics, part I: one-dimensional scanning,” Wind Energy A 13(1), 51–61 (2010).
[Crossref]

J. Trujillo, F. Bingol, G. Larsen, J. Mann, and M. Kuhn, “Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning,” Wind Energy A 14(1), 61–75 (2011).
[Crossref]

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy A 9(1-2), 39–53 (2006).
[Crossref]

Other (3)

S. Wu, J. Yin, B. Liu, and J. Liu, “Wind Turbine Wake Visualization by Doppler Lidar,” in Light, Energy and the Environment 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper EM3A.4.
[Crossref]

J. O. Hinze and J. Hinze, Turbulence: an introduction to its mechanism and theory (McGraw-Hill New York, 1959).

H. Jørgensen, T. Mikkelsen, J. Mann, D. Bryce, A. Coffey, M. Harris, and D. Smith,“Site wind field determination using a CW Doppler Lidar- comparison with cup anemometers at Risø,” in The Science of Making Torque from Wind (European Wind Energy Association, 2004), pp. 261–266.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 The pulsed coherent Doppler Lidar setup.
Fig. 2
Fig. 2 The LOS velocity estimation by an arc scanning lidar and sine wave fitting.
Fig. 3
Fig. 3 Comparison of wind speed (a) and wind direction (b) measured by scanning wind lidar and mast.
Fig. 4
Fig. 4 Horizontal wind speed correlation (a) and wind direction correlation (b) at 80m for ten-minute data measured by 3D wind lidar and anemometer.
Fig. 5
Fig. 5 Horizontal wind speed correlation (a) and wind direction correlation (b) at 80m for Bin Averaged Data.
Fig. 6
Fig. 6 Map of the test site in Longgang Wind Power with the positions of the wind turbines (denoted by turbine blade) and the lidar locations (denoted by the pins and balloons for the wake detection and alternative wind profile measurement, respectively). The red circle indicates the region for wake study where the PCDL scan was made over turbine wakes and ambient atmosphere (lower right).
Fig. 7
Fig. 7 LOS wind velocity by lidar with PPI scanning at the wind park with foothills topography. Three of wind turbine generators are denoted as a, b and c.
Fig. 8
Fig. 8 LOS velocity detected by RHI scanning mode through two rotor blades at the wind park with foothills topography. Two wind turbine generators are denoted as d and e.
Fig. 9
Fig. 9 Velocity deficit downwind behind the WTG c (a) and WTG e (b) as the function of the blade diameter D.
Fig. 10
Fig. 10 Map of the lidar test site at the Rudong intertidal wind farm in spring and winter of 2014 with the positions of wind turbine generators (denoted by red dots) and locations of two 3D scanning PCDLs (denoted by the balloon A and B) and a wind profiler lidar (denoted by the balloon C).
Fig. 11
Fig. 11 LOS wind field at the intertidal zone by lidar PPI scan.
Fig. 12
Fig. 12 Turbulent wind field in the vicinity of operating wind turbines in Hami Gobi plain wind park at high wind speed of 8 −10 ms−1 (a) and relatively low wind speed of 4 - 6 ms−1 (b).
Fig. 13
Fig. 13 Wind speed profile series around two wind turbines retrieved form the Fig. 8’s RHI measurement.
Fig. 14
Fig. 14 The wind speed obtained by the 2 synchronously scanning lidars at the intertidal wind farm in December 2014 with the positions of lidars (denoted by red squares A and B). A wake induced by wind turbine generator WTG T1 is denoted by a rectangle in dash black line. The free stream region outside the wake is marked as a reference wind field by a rectangle in solid red line.
Fig. 15
Fig. 15 Wind velocity at the free stream region as a reference velocity and the wind velocity in the wake region. The tendency of reference velocity and wake velocity are plotted by a red triangle in solid red line and a black rectangle in dash black line, respectively.
Fig. 16
Fig. 16 Velocity deficit downwind behind the wind turbine generator WTG 1 as the function of the distance.
Fig. 17
Fig. 17 Longitudinal structure function for (a) Jan 3 2014 at Longgang, (b) April 10 2014 at Rudong, (c) Nov 15 2015 at Hami. Curves show calculations of the structure function for D raw (s) (blue closed circle), the corrected structure function D LL (s) (black closed circle), the von Kármán model D LL (s) ~ (black solid line) and the corrected von Kármán model D wgt (s,σ, L 0 ) (red solid line).

Tables (1)

Tables Icon

Table 1 Component Parameters of the CDL System

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ= v ¯ amb (z) v wake (z) v ¯ amb (z) ×100%,
D LL (s)= D raw (s)E(s),
D raw (kΔs)= 1 N T ( N R k) l=1 N T j=1 N R k { v ' [ R 1 +(j1)Δs, ϕ 1 +(l1)Δϕ,θ] v ' [ R 1 +(j+k1)Δs, ϕ 1 +(l1)Δϕ,θ]} 2 ,
D LL (s) ~ =2 σ 2 Λ( s L 0 ),
Λ(x)=1 2 2/3 x 1/3 Γ(1/3) K 1/3 (x)=10.5925485 x 1/3 K 1/3 (x),
L i = π Γ(5/6) Γ(1/3) L 0 =0.7468343 L 0 .
ε=[ 2 1/3 π 3 Γ(1/3)Γ(4/3) ] σ 3 L 0 =0.933668 σ 3 L 0 .
D wgt (s,σ, L 0 )=2 σ 2 G( s Δs , 2ln2 Δs Δr , Δs L 0 ),
G(m,μ,χ)= F(x,μ) [Λ(χ| mx |)Λ(χ| x |)]dx.
χ LL 2 = 1 N s k=1 N s [ D LL (kΔs) D wgt (kΔs,σ, L 0 )] 2 [k D wgt (kΔs,σ, L 0 )] 2 .

Metrics