Abstract

We investigate ultra-broadband wavelength converters based on cascaded second-harmonic generation and difference frequency generation using Bessel-chirped gratings (BCGs) in lithium niobate waveguides, and compare them to the ones using uniform grating and segmented grating, respectively. For the same length and power, the BCGs show broader bandwidth than the other two types of grating. The ripple of the matching response is very small as well. Analysis also shows that almost the same conversion bandwidth and maximum conversion efficiency with tolerant response flatness can be achieved when the manufacturing tolerance of the waveguide length is smaller than 0.1 cm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [Crossref]
  2. C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
    [Crossref]
  3. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm -band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
    [Crossref] [PubMed]
  4. A. J. Torregrosa, H. Maestre, and J. Capmany, “Wavelength conversion of incoherent broadband sources by intracavity difference frequency mixing,” IEEE Photonics Technol. Lett. 26(7), 694–697 (2014).
    [Crossref]
  5. G. W. Lu, A. Albuquerque, B. J. Puttnam, T. Sakamoto, M. Drummond, R. Nogueira, A. Kanno, S. Shinada, N. Wada, and T. Kawanishi, “Pump-linewidth-tolerant optical wavelength conversion for high-order QAM signals using coherent pumps,” Opt. Express 22(5), 5067–5075 (2014).
    [Crossref] [PubMed]
  6. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [Crossref]
  7. G. W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010).
    [Crossref] [PubMed]
  8. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
    [Crossref]
  9. S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40(11), 1548–1554 (2004).
    [Crossref]
  10. T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
    [Crossref]
  11. X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
    [Crossref]
  12. W. Liu, J. Sun, and J. Kurz, “Bandwidth and tenability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1–3), 239–246 (2003).
    [Crossref]
  13. A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express 19(23), 22528 (2011).
    [Crossref] [PubMed]
  14. S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photonics Technol. Lett. 16(2), 557–559 (2004).
    [Crossref]
  15. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
    [Crossref]
  16. F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
    [Crossref]
  17. M. Ahlawat, A. Tehranchi, K. Pandiyan, M. Cha, and R. Kashyap, “Tunable all-optical wavelength broadcasting in a PPLN with multiple QPM peaks,” Opt. Express 20(24), 27425–27433 (2012).
    [Crossref] [PubMed]
  18. G. Meloni, V. Vercesi, M. Scaffardi, A. Bogoni, and L. Poti, “Spectral-efficient flexible optical multicasting in a periodically poled lithium niobate waveguide,” J. Lightwave Technol. 33(23), 4731–4737 (2015).
    [Crossref]
  19. E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
    [Crossref]
  20. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
    [Crossref]
  21. G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded secondorder nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13(4), 341–343 (2001).
    [Crossref]
  22. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
    [Crossref]
  23. R. Kou, S. Kurimura, K. Kikuchi, A. Terasaki, H. Nakajima, K. Kondou, and J. Ichikawa, “High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide,” Opt. Express 19(12), 11867–11872 (2011).
    [Crossref] [PubMed]
  24. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  25. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
    [Crossref]
  26. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007).
    [Crossref]

2015 (1)

2014 (3)

G. W. Lu, A. Albuquerque, B. J. Puttnam, T. Sakamoto, M. Drummond, R. Nogueira, A. Kanno, S. Shinada, N. Wada, and T. Kawanishi, “Pump-linewidth-tolerant optical wavelength conversion for high-order QAM signals using coherent pumps,” Opt. Express 22(5), 5067–5075 (2014).
[Crossref] [PubMed]

A. J. Torregrosa, H. Maestre, and J. Capmany, “Wavelength conversion of incoherent broadband sources by intracavity difference frequency mixing,” IEEE Photonics Technol. Lett. 26(7), 694–697 (2014).
[Crossref]

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

2012 (3)

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

M. Ahlawat, A. Tehranchi, K. Pandiyan, M. Cha, and R. Kashyap, “Tunable all-optical wavelength broadcasting in a PPLN with multiple QPM peaks,” Opt. Express 20(24), 27425–27433 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[Crossref]

2007 (1)

2006 (2)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

2004 (2)

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photonics Technol. Lett. 16(2), 557–559 (2004).
[Crossref]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40(11), 1548–1554 (2004).
[Crossref]

2003 (1)

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tenability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1–3), 239–246 (2003).
[Crossref]

2002 (1)

X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[Crossref]

2001 (1)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded secondorder nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13(4), 341–343 (2001).
[Crossref]

1999 (3)

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
[Crossref]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

1993 (1)

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[Crossref]

Ahlawat, M.

Albuquerque, A.

Arbore, M. A.

Asobe, M.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

Assanto, G.

Bogoni, A.

G. Meloni, V. Vercesi, M. Scaffardi, A. Bogoni, and L. Poti, “Spectral-efficient flexible optical multicasting in a periodically poled lithium niobate waveguide,” J. Lightwave Technol. 33(23), 4731–4737 (2015).
[Crossref]

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
[Crossref]

Capmany, J.

A. J. Torregrosa, H. Maestre, and J. Capmany, “Wavelength conversion of incoherent broadband sources by intracavity difference frequency mixing,” IEEE Photonics Technol. Lett. 26(7), 694–697 (2014).
[Crossref]

Cha, M.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
[Crossref]

Che, L.

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
[Crossref]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm -band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
[Crossref] [PubMed]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
[Crossref]

Dalgaard, K.

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

Drummond, M.

Fejer, M. M.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[Crossref]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[Crossref]

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded secondorder nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13(4), 341–343 (2001).
[Crossref]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
[Crossref]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm -band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
[Crossref] [PubMed]

Fukuchi, Y.

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

Furukawa, H.

Galili, M.

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

Gallo, K.

Gao, S.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007).
[Crossref]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photonics Technol. Lett. 16(2), 557–559 (2004).
[Crossref]

Gu, W.

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40(11), 1548–1554 (2004).
[Crossref]

Guo, Y.

X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[Crossref]

Hauden, J.

Huang, D.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[Crossref]

Ichikawa, J.

Ito, H.

Itoh, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

Jin, G.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007).
[Crossref]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photonics Technol. Lett. 16(2), 557–559 (2004).
[Crossref]

Jundt, D. H.

Kanbara, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

Kanno, A.

Kanter, G. S.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded secondorder nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13(4), 341–343 (2001).
[Crossref]

Kashyap, R.

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[Crossref]

Kawanishi, T.

Kikuchi, K.

Kondou, K.

Kou, R.

Kumar, P.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded secondorder nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13(4), 341–343 (2001).
[Crossref]

Kumar, S.

Kurimura, S.

Kurz, J.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tenability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1–3), 239–246 (2003).
[Crossref]

Langrock, C.

Lazzeri, E.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Li, B.

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

Li, Y.

X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[Crossref]

Liu, T.

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

Liu, W.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tenability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1–3), 239–246 (2003).
[Crossref]

Liu, X.

X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[Crossref]

Lu, G. W.

Maestre, H.

A. J. Torregrosa, H. Maestre, and J. Capmany, “Wavelength conversion of incoherent broadband sources by intracavity difference frequency mixing,” IEEE Photonics Technol. Lett. 26(7), 694–697 (2014).
[Crossref]

Malacarne, A.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

McGeehan, J. E.

Meloni, G.

Miyazaki, T.

Miyazawa, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

Morandotti, R.

Nakajima, H.

Noguchi, K.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

Nogueira, R.

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[Crossref]

Pandiyan, K.

Parameswaran, K. R.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded secondorder nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13(4), 341–343 (2001).
[Crossref]

Peucheret, C.

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

Poti, L.

Puttnam, B. J.

Qi, Y.

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

Ros, F. D.

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

Sakamoto, T.

Scaffardi, M.

Serafino, G.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Shinada, S.

Sun, J.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[Crossref]

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tenability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1–3), 239–246 (2003).
[Crossref]

Tehranchi, A.

Terasaki, A.

Tian, Y.

Torregrosa, A. J.

A. J. Torregrosa, H. Maestre, and J. Capmany, “Wavelength conversion of incoherent broadband sources by intracavity difference frequency mixing,” IEEE Photonics Technol. Lett. 26(7), 694–697 (2014).
[Crossref]

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Vercesi, V.

Wada, N.

Wang, J.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[Crossref]

Willner, A. E.

Xiao, X.

Xu, C. Q.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[Crossref]

Xu, J.

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

Yanagawa, T.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

Yang, C.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007).
[Crossref]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photonics Technol. Lett. 16(2), 557–559 (2004).
[Crossref]

Yokohama, I.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

You, Z.

Yu, S.

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40(11), 1548–1554 (2004).
[Crossref]

Zhang, H.

X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[Crossref]

Zhang, X.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[Crossref]

Appl. Phys. Lett. (2)

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

IEEE J. Quantum Electron. (3)

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions,” IEEE J. Quantum Electron. 40(11), 1548–1554 (2004).
[Crossref]

X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[Crossref]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

F. D. Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2×BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of secondorder nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11(3), 328–330 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (5)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded secondorder nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13(4), 341–343 (2001).
[Crossref]

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photonics Technol. Lett. 16(2), 557–559 (2004).
[Crossref]

A. J. Torregrosa, H. Maestre, and J. Capmany, “Wavelength conversion of incoherent broadband sources by intracavity difference frequency mixing,” IEEE Photonics Technol. Lett. 26(7), 694–697 (2014).
[Crossref]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11(6), 653–655 (1999).
[Crossref]

J. Lightwave Technol. (4)

J. Mod. Opt. (1)

T. Liu, Y. Qi, L. Che, B. Li, S. Yu, and W. Gu, “Flat broadband wavelength conversion based on cascaded second-harmonic generation and difference frequency generation in segmented quasi-phase matched gratings,” J. Mod. Opt. 59(7-8), 650–657 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tenability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1–3), 239–246 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Model of BCGs for cascaded SHG + DFG wavelength conversion.
Fig. 2
Fig. 2 Conversion efficiencies versus the signal wavelength in uniform grating, 3-segment grating and BCGs when the total waveguide length L equals 3 cm.
Fig. 3
Fig. 3 Conversion bandwidths versus the total waveguide length in uniform grating, 3-segment grating and BCGs.
Fig. 4
Fig. 4 Maximum conversion efficiencies (a) and response flatness (b) versus the total waveguide length in uniform grating, 3-segment grating and BCGs.
Fig. 5
Fig. 5 (a) Conversion efficiencies versus signal wavelength for BCGs with the same poling period but different total waveguide lengths, and the corresponding relative errors of (b) ηmax, (c) Δλ and (d) F versus deviation of waveguide lengths from 3.5 cm.

Tables (1)

Tables Icon

Table 1 Chirp coefficients γ, τ, and ξ and the corresponding conversion properties for various waveguide lengths L

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λ ( x ) = Λ 0 { 1 + γ J v [ τ ( ξ + x L ) ] } ,
E p x = i ω p κ S H G E p * E S H exp [ i Δ Φ S H G ( x ) ] α p 2 E p ,
E s x = i ω s κ D F G E c * E S H exp [ i Δ Φ D F G ( x ) ] α s 2 E s ,
E c x = i ω c κ D F G E s * E S H exp [ i Δ Φ D F G ( x ) ] α c 2 E c ,
E S H x = i ω p κ S H G E p 2 exp [ i Δ Φ S H G ( x ) ] i ω S H κ D F G E s E c exp [ i Δ Φ D F G ( x ) ] α S H 2 E S H ,

Metrics