Abstract

We design a specific cascade least mean square (LMS) equalizer and to the best of our knowledge, it is the first time this kind of equalizer has been employed for 60-GHz millimeter-wave (mm-wave) radio over fiber (RoF) system. The proposed cascade LMS equalizer consists of two sub-equalizers which are designated for optical and wireless channel compensations, respectively. We control the linear and nonlinear factors originated from optical link and wireless link separately. The cascade equalization scheme can keep the nonlinear distortions of the RoF system in a low degree. We theoretically and experimentally investigate the parameters of the two sub-equalizers to reach their best performances. The experiment results show that the cascade equalization scheme has a faster convergence speed. It needs a training sequence with a length of 10000 to reach its stable status, which is only half as long as the traditional LMS equalizer needs. With the utility of a proposed equalizer, the 60-GHz RoF system can successfully transmit 5-Gbps BPSK signal over 10-km fiber and 1.2-m wireless link under forward error correction (FEC) limit 10−3. An improvement of 4dBm and 1dBm in power sensitivity at BER 10−3 over traditional LMS equalizer can be observed when the signals are transmitted through Back-to-Back (BTB) and 10-km fiber 1.2-m wireless links, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation and transmission of multiband and multi-gigabit 60-GHz MMW signals in an RoF system with frequency quintupling technique

Liang Zhang, Ming Zhu, Chenhui Ye, Shu-Hao Fan, Cheng Liu, Xiaofeng Hu, Pan Cao, Qingjiang Chang, Yikai Su, and Gee-Kung Chang
Opt. Express 21(8) 9899-9905 (2013)

2 × 2 MIMO radio-over-fiber system at 60 GHz employing frequency domain equalization

Chun-Ting Lin, Anthony Ng’oma, Wei-Yuan Lee, Chia-Chien Wei, Chih-Yun Wang, Tsung-Hung Lu, Jyehong Chen, Wen-Jr Jiang, and Chun-Hung Ho
Opt. Express 20(1) 562-567 (2012)

Transmission of 20-Gb/s OFDM signals occupying 7-GHz license-free band at 60 GHz using a RoF system employing frequency sextupling optical up-conversion

Po-Tsung Shih, Chun-Ting Lin, Wen-Jr Jiang, Han-Sheng Huang, Jyehong Chen, Anthony Ng’oma, Michael Sauer, and Sien Chi
Opt. Express 18(12) 12748-12755 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Wang, Y. H. Li, L. Y. Song, and B. Vucetic, “Multi-Gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks,” IEEE Commun. Mag. 53(1), 168–178 (2015).
    [Crossref]
  2. C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
    [Crossref]
  3. C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
    [Crossref]
  4. J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
    [Crossref]
  5. J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
    [Crossref]
  6. P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag. 53(10), 86–94 (2015).
    [Crossref]
  7. L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
    [Crossref]
  8. A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
    [Crossref]
  9. X. N. Fernando and A. B. Sesay, “A Hammerstein-Type equalizer for concatenated fiber-wireless uplink,” IEEE T. Veh. Technol. 56(6), 1980–1991 (2005).
    [Crossref]
  10. Y. T. Gu, K. Tang, and H. J. Cui, “LMS algorithm with gradient descent filter length,” IEEE Signal Process. Lett. 11(3), 305–307 (2004).
    [Crossref]
  11. R. A. Axford, L. B. Milstein, and J. R. Zeidler, “A dual-mode algorithm for blind equalization of QAM signals: CADAMA,” in 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers (IEEE, 1995), pp. 172–176.
  12. L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
    [Crossref]
  13. S. M. Liu, Y. B. Kou, H. P. Tian, S. Liu, D. Q. Yang, and Y. F. Ji, “A 60-GHz RoF system providing 5-Gbps BPSK signal employing LMS equalizer,” in Asia Communications and Photonics Conference 2015 (ACP, 2015), paper ASu1J.1.
    [Crossref]
  14. S. M. Liu, G. S. Shen, and H. P. Tian, “A 60-GHz RoF system employing variable step size LMS equalizer with fast convergence speed,” in Optical Fiber Communication Conference and Exposition 2016 (OFC, 2016), paper Th2A.18.
  15. L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
    [Crossref]
  16. A. Hekkala, M. Lasanen, L. C. Vieira, N. J. Gomes, and A. Nkansah, “Architectures for joint compensation of RoF and PA with nonideal feedback,” in 2010 IEEE 71stVehicular Technology Conference (VTC) (IEEE, 2010), pp. 1–5.
  17. A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
    [Crossref]
  18. R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,” IEEE Trans. Signal Process. 40(7), 1633–1642 (1992).
    [Crossref]
  19. J. Zhang, J. Yu, N. Chi, and H. C. Chien, “Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers,” Opt. Express 22(17), 20515–20529 (2014).
    [Crossref] [PubMed]
  20. P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear prediction,” IEEE Trans. Signal Process. 46(9), 2566–2571 (1998).
    [Crossref]
  21. H. B. Ma, “What kinds of nonlinear signals can be tracked by LMS algorithm?” in Chinese Control Conference (2003), pp. 649–654.
  22. J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
    [Crossref] [PubMed]
  23. D. Y. Huang, X. Su, and A. Nallanathan, “Characterization of a cascade LMS predictor,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (IEEE, 2005), pp. 173–176.

2015 (4)

P. Wang, Y. H. Li, L. Y. Song, and B. Vucetic, “Multi-Gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks,” IEEE Commun. Mag. 53(1), 168–178 (2015).
[Crossref]

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag. 53(10), 86–94 (2015).
[Crossref]

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

2014 (3)

J. Zhang, J. Yu, N. Chi, and H. C. Chien, “Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers,” Opt. Express 22(17), 20515–20529 (2014).
[Crossref] [PubMed]

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

2013 (2)

J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
[Crossref]

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

2010 (1)

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

2005 (1)

X. N. Fernando and A. B. Sesay, “A Hammerstein-Type equalizer for concatenated fiber-wireless uplink,” IEEE T. Veh. Technol. 56(6), 1980–1991 (2005).
[Crossref]

2004 (2)

Y. T. Gu, K. Tang, and H. J. Cui, “LMS algorithm with gradient descent filter length,” IEEE Signal Process. Lett. 11(3), 305–307 (2004).
[Crossref]

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

1998 (1)

P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear prediction,” IEEE Trans. Signal Process. 46(9), 2566–2571 (1998).
[Crossref]

1992 (1)

R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,” IEEE Trans. Signal Process. 40(7), 1633–1642 (1992).
[Crossref]

Aggoune, H. M.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Aldaya, I.

J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
[Crossref]

Aragón-Zavala, A.

J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
[Crossref]

Axford, R. A.

R. A. Axford, L. B. Milstein, and J. R. Zeidler, “A dual-mode algorithm for blind equalization of QAM signals: CADAMA,” in 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers (IEEE, 1995), pp. 172–176.

Beas, J.

J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
[Crossref]

Bittner, S.

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

Campuzano, G.

J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
[Crossref]

Castañón, G.

J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
[Crossref]

Chi, N.

J. Zhang, J. Yu, N. Chi, and H. C. Chien, “Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers,” Opt. Express 22(17), 20515–20529 (2014).
[Crossref] [PubMed]

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Chien, H. C.

Cui, H. J.

Y. T. Gu, K. Tang, and H. J. Cui, “LMS algorithm with gradient descent filter length,” IEEE Signal Process. Lett. 11(3), 305–307 (2004).
[Crossref]

Dat, P. T.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag. 53(10), 86–94 (2015).
[Crossref]

Dierhm, F.

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

Ding, L.

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Fernando, X. N.

X. N. Fernando and A. B. Sesay, “A Hammerstein-Type equalizer for concatenated fiber-wireless uplink,” IEEE T. Veh. Technol. 56(6), 1980–1991 (2005).
[Crossref]

Fletcher, S.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Gao, X. Q.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Gao, Y. L.

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Giardina, C. R.

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Gomes, N. J.

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

Gu, R. T.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Gu, Y. T.

Y. T. Gu, K. Tang, and H. J. Cui, “LMS algorithm with gradient descent filter length,” IEEE Signal Process. Lett. 11(3), 305–307 (2004).
[Crossref]

Haas, H.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Haider, F.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Han, S.

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

Hekkala, A.

A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
[Crossref]

A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
[Crossref]

Hepsydir, E.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Huang, D. Y.

D. Y. Huang, X. Su, and A. Nallanathan, “Characterization of a cascade LMS predictor,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (IEEE, 2005), pp. 173–176.

Huang, Z.

i, C.-L.

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

Ji, Y.

Ji, Y. F.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Johnston, E. W.

R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,” IEEE Trans. Signal Process. 40(7), 1633–1642 (1992).
[Crossref]

Kanno, A.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag. 53(10), 86–94 (2015).
[Crossref]

Kawanishi, T.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag. 53(10), 86–94 (2015).
[Crossref]

Kenney, J. S.

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Kim, J.

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Kotzsch, V.

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

Kwong, R. H.

R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,” IEEE Trans. Signal Process. 40(7), 1633–1642 (1992).
[Crossref]

Lasanen, M.

A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
[Crossref]

A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
[Crossref]

Lau, A. P. T.

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Li, G.

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

Li, H.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Li, J.

Li, Y. H.

P. Wang, Y. H. Li, L. Y. Song, and B. Vucetic, “Multi-Gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks,” IEEE Commun. Mag. 53(1), 168–178 (2015).
[Crossref]

Liu, S. M.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Liu, X.

Lu, C.

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Ma, H. B.

H. B. Ma, “What kinds of nonlinear signals can be tracked by LMS algorithm?” in Chinese Control Conference (2003), pp. 649–654.

Ma, Z. X.

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Milstein, L. B.

R. A. Axford, L. B. Milstein, and J. R. Zeidler, “A dual-mode algorithm for blind equalization of QAM signals: CADAMA,” in 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers (IEEE, 1995), pp. 172–176.

Morgan, D. R.

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Nallanathan, A.

D. Y. Huang, X. Su, and A. Nallanathan, “Characterization of a cascade LMS predictor,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (IEEE, 2005), pp. 173–176.

Nkansah, A.

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

Pan, Z.

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

Prandoni, P.

P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear prediction,” IEEE Trans. Signal Process. 46(9), 2566–2571 (1998).
[Crossref]

Rowell, C.

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

Sesay, A. B.

X. N. Fernando and A. B. Sesay, “A Hammerstein-Type equalizer for concatenated fiber-wireless uplink,” IEEE T. Veh. Technol. 56(6), 1980–1991 (2005).
[Crossref]

Song, L. Y.

P. Wang, Y. H. Li, L. Y. Song, and B. Vucetic, “Multi-Gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks,” IEEE Commun. Mag. 53(1), 168–178 (2015).
[Crossref]

Song, M.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Su, X.

D. Y. Huang, X. Su, and A. Nallanathan, “Characterization of a cascade LMS predictor,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (IEEE, 2005), pp. 173–176.

Tang, K.

Y. T. Gu, K. Tang, and H. J. Cui, “LMS algorithm with gradient descent filter length,” IEEE Signal Process. Lett. 11(3), 305–307 (2004).
[Crossref]

Tao, L.

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Vetterli, M.

P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear prediction,” IEEE Trans. Signal Process. 46(9), 2566–2571 (1998).
[Crossref]

Vieira, L. C.

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

Vucetic, B.

P. Wang, Y. H. Li, L. Y. Song, and B. Vucetic, “Multi-Gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks,” IEEE Commun. Mag. 53(1), 168–178 (2015).
[Crossref]

Wang, C. X.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Wang, P.

P. Wang, Y. H. Li, L. Y. Song, and B. Vucetic, “Multi-Gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks,” IEEE Commun. Mag. 53(1), 168–178 (2015).
[Crossref]

Wang, X. B.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Wang, Y. G.

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Xu, K.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Xu, Z.

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

Yamamoto, N.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag. 53(10), 86–94 (2015).
[Crossref]

Yang, Y.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

You, X. H.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yu, J.

Yuan, D. F.

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Zeidler, J. R.

R. A. Axford, L. B. Milstein, and J. R. Zeidler, “A dual-mode algorithm for blind equalization of QAM signals: CADAMA,” in 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers (IEEE, 1995), pp. 172–176.

Zhang, J.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

J. Zhang, J. Yu, N. Chi, and H. C. Chien, “Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers,” Opt. Express 22(17), 20515–20529 (2014).
[Crossref] [PubMed]

Zhang, J. W.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Zhao, Y. L.

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

Zhou, T.

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

Commun. Mag. (1)

C. X. Wang, F. Haider, X. Q. Gao, X. H. You, Y. Yang, D. F. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsydir, “Cellular architecture and key technologies for 5G wireless communication networks,” Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

J. Beas, G. Castañón, I. Aldaya, A. Aragón-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: a survey,” IEEE Comm. Surv. and Tutor. 15(4), 1593–1619 (2013).
[Crossref]

IEEE Commun. Mag. (4)

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag. 53(10), 86–94 (2015).
[Crossref]

J. W. Zhang, Y. F. Ji, J. Zhang, R. T. Gu, Y. L. Zhao, S. M. Liu, K. Xu, M. Song, H. Li, and X. B. Wang, “Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity,” IEEE Commun. Mag. 53(9), 90–98 (2015).
[Crossref]

P. Wang, Y. H. Li, L. Y. Song, and B. Vucetic, “Multi-Gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks,” IEEE Commun. Mag. 53(1), 168–178 (2015).
[Crossref]

C.-L. i, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 52(2), 66–73 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Tao, Y. G. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

IEEE Signal Process. Lett. (1)

Y. T. Gu, K. Tang, and H. J. Cui, “LMS algorithm with gradient descent filter length,” IEEE Signal Process. Lett. 11(3), 305–307 (2004).
[Crossref]

IEEE T. Veh. Technol. (1)

X. N. Fernando and A. B. Sesay, “A Hammerstein-Type equalizer for concatenated fiber-wireless uplink,” IEEE T. Veh. Technol. 56(6), 1980–1991 (2005).
[Crossref]

IEEE Trans. Commun. (1)

L. Ding, T. Zhou, D. R. Morgan, Z. X. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[Crossref]

IEEE Trans. Signal Process. (2)

R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,” IEEE Trans. Signal Process. 40(7), 1633–1642 (1992).
[Crossref]

P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear prediction,” IEEE Trans. Signal Process. 46(9), 2566–2571 (1998).
[Crossref]

IEEE Wirel. Commun. (1)

L. C. Vieira, N. J. Gomes, A. Nkansah, S. Bittner, F. Dierhm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF link in DAS,” IEEE Wirel. Commun. 17(3), 52–59 (2010).
[Crossref]

Opt. Express (2)

Other (8)

D. Y. Huang, X. Su, and A. Nallanathan, “Characterization of a cascade LMS predictor,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (IEEE, 2005), pp. 173–176.

H. B. Ma, “What kinds of nonlinear signals can be tracked by LMS algorithm?” in Chinese Control Conference (2003), pp. 649–654.

A. Hekkala, M. Lasanen, L. C. Vieira, N. J. Gomes, and A. Nkansah, “Architectures for joint compensation of RoF and PA with nonideal feedback,” in 2010 IEEE 71stVehicular Technology Conference (VTC) (IEEE, 2010), pp. 1–5.

A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
[Crossref]

R. A. Axford, L. B. Milstein, and J. R. Zeidler, “A dual-mode algorithm for blind equalization of QAM signals: CADAMA,” in 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers (IEEE, 1995), pp. 172–176.

S. M. Liu, Y. B. Kou, H. P. Tian, S. Liu, D. Q. Yang, and Y. F. Ji, “A 60-GHz RoF system providing 5-Gbps BPSK signal employing LMS equalizer,” in Asia Communications and Photonics Conference 2015 (ACP, 2015), paper ASu1J.1.
[Crossref]

S. M. Liu, G. S. Shen, and H. P. Tian, “A 60-GHz RoF system employing variable step size LMS equalizer with fast convergence speed,” in Optical Fiber Communication Conference and Exposition 2016 (OFC, 2016), paper Th2A.18.

A. Hekkala and M. Lasanen, “Performance of adaptive algorithms for compensation of radio over fiber links,” in 2009 Wireless Telecommunications Symposium (IEEE, 2009), pp. 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch map of 5G mobile network.
Fig. 2
Fig. 2 Structure of the proposed cascade LMS equalizer.
Fig. 3
Fig. 3 Experimental setup for the 60-GHz RoF system employing the proposed cascade LMS equalizer. (a) and (b) are the optical sprectrums of the signals after phase modulator and intensity modulator. (c) Picture of the real experimental setup. DFB-LD: distributed feedback laser device. PM: phase modulator. IL: interleaver. EDFA: erbium doped fiber amplifier. IM: intensity modulator. PD: photodiode. EA: electrical amplifier. LPF: low-pass filter. OSC: oscilloscope. CO: central office. RAU: remote antenna unit. UE: user equipment
Fig. 4
Fig. 4 BER performances of the 60-GHz RoF system when transmitting 5-Gbps BPSK signal with received power at −28.2dBm versus (a) values of step sizes of the two sub-equalizers and (b) training iterations for two sub-equalizers.
Fig. 5
Fig. 5 Results of the MSE of the cascade equalizer when the step size of traditional LMS equalizer is μ = 0.0005 and μ = 0.001 (a) step size of optical and wireless equalizers are μ1 = 0.001, μ2 = 0.0005 and (b) μ1 = 0.01, μ2 = 0.0005, respectively.
Fig. 6
Fig. 6 The BER performances of system versus the number of iterations with received power at −28.2dBm at bitrate 5Gbps.
Fig. 7
Fig. 7 BER performances of 60-GHz RoF system employing cascade equalizer or single LMS equalizer versus taps number when the optical received power is −24.2dBm.
Fig. 8
Fig. 8 Comparisons of different equalization schemes for 60-GHz RoF system with (a) BTB and (b) 10-km SMF and 1.2-m wireless link when transmitting 5-Gbps BPSK signal.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

W(n+1)=W(n)+ μ LMS e(n)Y(n)
e(n)=z(n) W T (n)Y(n)
H(z)= Y(z) X(z) = r=0 M b r z r 1+ k=1 N a k z k = b 0 + b 1 z 1 + b 2 z 2 +...+ b M z M 1+ a 1 z 1 + a 2 z 2 +...+ a N z N
H(z)= r=0 M b r z r = b 0 + b 1 z 1 + b 2 z 2 +...+ b M z M
H(z)= r=0 M b r z r = H 1 (z) H 2 (z)=( n=0 N 1 b 1n z n )( m=0 N 2 b 2m z m ) =( b 10 + b 11 z 1 +...+ b 1 N 1 z N 1 )( b 20 + b 21 z 1 +...+ b 2 N 2 z N 2 )
Z(z)=X(z)H(z)G(z)=X(z) H 1 (z) G 1 (z) H 2 (z) G 2 (z)
G 1 (z)= 1 H 1 (z) = m=0 M W 1m z m = W 10 + W 11 z 1 +...+ W 1M z M
G 2 (z)= 1 H 2 (z) = n=0 N W 2n z n = W 20 + W 21 z 1 +...+ W 2N z N
y(n)= k=0 N a k x(nk) = a 0 x(n)+ a 1 x(n1)+...+ a N x(nN)
w(n)= k=1 K q=0 Q c kq z(nq) | z(nq) | k1 ,k=1,3,5,...
w(n)= k=1 K q=0 Q i=0 N c kq a i x(nqi) | i=0 N x(nqi) | k1 ,k=1,3,5,...
y(n)= k=0 N h k x k (n) = h 0 + h 1 (0)x(t)+ h 1 (0,0) x 2 (t)+...+ h N (0,...0) x N (t)
w(n)= k=1 K q=0 Q i=0 N c kq h i x i (nq) | i=0 N h i x i (nq) | k1 ,k=1,3,5,...

Metrics