Abstract

The solar grating spectrometer is an important tool to study the thermodynamic properties of the solar atmosphere with different height distribution, but its imaging performance will be degraded by the wavefront aberration. On the other hand, narrow slit of the grating spectrometer will filter the wavefront aberration to a certain extent. In this paper, the mathematical relation between the wavefront aberration and the imaging performance of the grating spectrometer is derived. The numerical simulation is performed and is validated by the experiment. The results demonstrate that: The influence of the wavefront aberration with the different types and magnitudes on the spectral resolution and the energy utilization is different. The influence of the different slits on the wavefront aberrations is different. Generally, the smaller the slit is, the better the spectral resolution is. However, this is not true for the low-frequency dominated aberration, e.g. the defocus, since its low frequency will also be blocked by the narrow slit. If the influence of the filter slit on the wavefront aberration cannot be taken into account, it will lead to adaptive optics over-compensation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband FUV imaging spectrometer: advanced design with a single toroidal uniform-line-space grating

Lei Yu, Shu-rong Wang, Yi Qu, and Guan-yu Lin
Appl. Opt. 50(22) 4468-4477 (2011)

High-resolution microspectrometer with an aberration-correcting planar grating

Semen Grabarnik, Arvin Emadi, Huaiwen Wu, Ger de Graaf, and Reinoud F. Wolffenbuttel
Appl. Opt. 47(34) 6442-6447 (2008)

Stigmatic spectrometers for extended sources: design with toroidal varied-line-space gratings

Luca Poletto and Roger J. Thomas
Appl. Opt. 43(10) 2029-2038 (2004)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Schrijver and C. Zwaan, Solar and Stellar Magnetic Activity (Cambridge University Press, 2000), Ch. 4.
  2. K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
    [Crossref]
  3. R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
    [Crossref]
  4. T. R. Rimmele, “Recent advances in solar adaptive optics,” Proc. SPIE 5490, 34–46 (2004).
    [Crossref]
  5. V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
    [Crossref]
  6. J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
    [Crossref]
  7. G. Wu, Design of Optical Spectrometer (Science Press, 1978), Ch. 4.
  8. C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005), Ch. 6.
  9. C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
    [Crossref]
  10. C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).
  11. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Ch. 5.
  12. A. J. Brown, “Spectral curve fitting for automatic hyperspectral data analysis,” IEEE. T. Geosci. Remote 44(6), 1601–1608 (2006).
    [Crossref]
  13. Y. R. Huang, A. A. Xu, and Y. H. Tang, Observational Astrophysics, (Science Press, 2000), Ch. 4.
  14. J. W. Goodman, Statistical Optics (Wiley Interscience, 1985), Ch. 2.
  15. K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).
  16. B. W. Lites, D. F. Elmore, and K. V. Streander, “The solar-B spectro-polarimeter,” Adv. Solar Polarimetry 236, 33–40 (2000).
  17. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19(08), 281–376 (1981).

2013 (1)

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

2012 (1)

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

2010 (2)

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

2007 (1)

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

2006 (2)

V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
[Crossref]

A. J. Brown, “Spectral curve fitting for automatic hyperspectral data analysis,” IEEE. T. Geosci. Remote 44(6), 1601–1608 (2006).
[Crossref]

2004 (1)

T. R. Rimmele, “Recent advances in solar adaptive optics,” Proc. SPIE 5490, 34–46 (2004).
[Crossref]

2003 (1)

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

2000 (1)

B. W. Lites, D. F. Elmore, and K. V. Streander, “The solar-B spectro-polarimeter,” Adv. Solar Polarimetry 236, 33–40 (2000).

1981 (1)

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19(08), 281–376 (1981).

Ahn, K.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Balthasar, H.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Berkefeld, T.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Berst, C.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Boteler, D.

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

Brown, A. J.

A. J. Brown, “Spectral curve fitting for automatic hyperspectral data analysis,” IEEE. T. Geosci. Remote 44(6), 1601–1608 (2006).
[Crossref]

Caligari, P.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Cao, W.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Carlsson, M.

V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
[Crossref]

Chae, J.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Charbonneau, P.

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

Chen, D.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Chen, S.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Cho, K.-S.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Collados, M.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Crouch, A.

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

De Pontieu, B.

V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
[Crossref]

Denker, C.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Elmore, D. F.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

B. W. Lites, D. F. Elmore, and K. V. Streander, “The solar-B spectro-polarimeter,” Adv. Solar Polarimetry 236, 33–40 (2000).

Goode, P. R.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Gu, N.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

Guan, C.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Halbgewachs, C.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Hansteen, V. H.

V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
[Crossref]

Hegwer, S. L.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Heidecke, F.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Hofmann, A.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Jang, B. H.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Klavana, M.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Kneer, F.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Lagg, A.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Lin, J.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Lites, B. W.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

B. W. Lites, D. F. Elmore, and K. V. Streander, “The solar-B spectro-polarimeter,” Adv. Solar Polarimetry 236, 33–40 (2000).

Liu, Z.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Manson, A.

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

Nah, J.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Paquette, H.

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

Park, H. M.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Park, Y.-D.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Popow, E.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Rao, C.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Rao, X.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Richards, K.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Rimmele, T. R.

T. R. Rimmele, “Recent advances in solar adaptive optics,” Proc. SPIE 5490, 34–46 (2004).
[Crossref]

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Roddier, F.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19(08), 281–376 (1981).

Rouppe van der Voort, L.

V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
[Crossref]

Sankarasubramanian, K.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Schmidt, D.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Scott, G.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Sigwarth, M.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Sobotka, M.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Solanki, S. K.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Soltau, D.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Streander, K. V.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

B. W. Lites, D. F. Elmore, and K. V. Streander, “The solar-B spectro-polarimeter,” Adv. Solar Polarimetry 236, 33–40 (2000).

Tapping, K. F.

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

van Noort, M.

V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
[Crossref]

Volkmer, R.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Von, D. L. O.

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Wang, C.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

Wilkins, L. M.

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

Yang, H.

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Zhang, L.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

Zhu, L.

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Adv. Solar Polarimetry (1)

B. W. Lites, D. F. Elmore, and K. V. Streander, “The solar-B spectro-polarimeter,” Adv. Solar Polarimetry 236, 33–40 (2000).

Appl. Opt. (1)

C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49(31), 129–135 (2010).
[Crossref]

Astron. Nachr. (1)

R. Volkmer, D. L. O. Von, C. Denker, S. K. Solanki, H. Balthasar, T. Berkefeld, P. Caligari, M. Collados, C. Halbgewachs, F. Heidecke, A. Hofmann, M. Klavana, F. Kneer, A. Lagg, E. Popow, D. Schmidt, M. Sobotka, and D. Soltau, “GREGOR solar telescope: design and status,” Astron. Nachr. 331(6), 624–627 (2010).
[Crossref]

Astrophys. J. (1)

V. H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, and M. Carlsson, “Dynamic fibrils are driven by magnetoacoustic shocks,” Astrophys. J. 647(1), 73–76 (2006).
[Crossref]

IEEE. T. Geosci. Remote (1)

A. J. Brown, “Spectral curve fitting for automatic hyperspectral data analysis,” IEEE. T. Geosci. Remote 44(6), 1601–1608 (2006).
[Crossref]

Proc. SPIE (3)

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, J. Lin, and Z. Liu, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” Proc. SPIE 8447, 844746 (2012).

K. Sankarasubramanian, D. F. Elmore, B. W. Lites, M. Sigwarth, T. R. Rimmele, S. L. Hegwer, G. Scott, K. V. Streander, L. M. Wilkins, K. Richards, and C. Berst, “Diffraction limited spectro-polarimeter - Phase I,” Proc. SPIE 4843, 414 (2003).

T. R. Rimmele, “Recent advances in solar adaptive optics,” Proc. SPIE 5490, 34–46 (2004).
[Crossref]

Prog. Opt. (1)

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19(08), 281–376 (1981).

Sol. Phys. (2)

K. F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, “Solar magnetic activity and total irradiance since the maunder minimum,” Sol. Phys. 246(2), 309–326 (2007).
[Crossref]

J. Chae, H. M. Park, K. Ahn, H. Yang, Y.-D. Park, J. Nah, B. H. Jang, K.-S. Cho, W. Cao, and P. R. Goode, “Fast imaging solar spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory,” Sol. Phys. 288(1), 1–22 (2013).
[Crossref]

Other (6)

G. Wu, Design of Optical Spectrometer (Science Press, 1978), Ch. 4.

C. A. Palmer and E. G. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005), Ch. 6.

C. J. Schrijver and C. Zwaan, Solar and Stellar Magnetic Activity (Cambridge University Press, 2000), Ch. 4.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Ch. 5.

Y. R. Huang, A. A. Xu, and Y. H. Tang, Observational Astrophysics, (Science Press, 2000), Ch. 4.

J. W. Goodman, Statistical Optics (Wiley Interscience, 1985), Ch. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The spectral line influenced by the aberration. The red and the blue solid lines are the spectral line s1 and s2, respectively; the red (s1aberration) and blue (s2aberration) dot lines are the spectral lines s1 and the s2 influenced by the aberration, respectively.
Fig. 2
Fig. 2 The sketch map of imaging grating spectrometer.
Fig. 3
Fig. 3 The grating dispersion model of imaging grating spectrometer. After the grating dispersion, the 2-spatial dimensions are converted to the spectral dimension (along the x direction) and spatial dimension (along the y direction). The o(x0,y0) is set as the reference point, corresponding to the diffraction angle β. “o” is any point along the grating dispersion direction, Δθx is the deviation angle from the β, Δxθ is the distance “oo”, f' is the focal length of the imager.
Fig. 4
Fig. 4 The optical layout of the grating spectrometer. L1~L3: lenses, BS1~BS2: 50/50 non-polarizing beam splitters, OAP: off axis parabola mirror.
Fig. 5
Fig. 5 The focal spots after the AO correction.(a)The numerical simulation,(b)CCD camera captured.
Fig. 6
Fig. 6 The influence of wavefront aberration on the spectral resolution. The Figs from left to right represent the influence of the 4th Zernike order aberration with the RMS = 0.2λ and kolmogorov phase with the D/ro = 5, respectively. The Figs from top to bottom represent the wavefront aberration, the simulation farfield image, the simulation spectral profile, the farfield image captured by the CCD camera and the observed spectral profile.
Fig. 7
Fig. 7 The influence of different types and magnitudes of aberrations on the κ with 1dA (diameter of of Airy disk) of the slit width. The Figs from top to bottom represent the influence of the different types and magnitudes on the κ and η, respectively. From left to right represent the results of the simulation and the experiment.
Fig. 8
Fig. 8 The influence of different slit widths on the κ and η. The Figs from top to bottom represent the influence of the different slits widths on the κ and η, respectively. From left to right represent the results of the simulation and the experiment.
Fig. 9
Fig. 9 The influence of the wavefront aberration generated by the Kolmogorov turbulence with D/ro = 5, D/ro = 7 and D/ro = 10 on the κ and η, the slit width is 2dA (100μm). (a)The influence of the wavefront aberration on the κ. (b)The influence of the wavefront aberration on the η.
Fig. 10
Fig. 10 The spectrum images of the white light without and with AO correction. The aberration is the10th Zernike aberration with the RMS = 0.2λ.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

Δλ= Δ λ gr 2 +Δ λ sp 2 +Δ λ det 2
Δ λ gr = λ w g σm
Δ λ sp = w s dcosα mf
Δ λ det =2 l pix dcosβ mf
κ= Δ λ φ Δ λ 0 Δ λ φ ×100%
O(λ)=I(λ)PSF(λ)
O( x 2 , y 2 )=PS F ta ( x 2 , y 2 ) = | { A 0 e iφ( x 1 , y 1 ) } | 2
O( x 2 , y 2 )=PS F ta ( x 2 , y 2 )rec t 2 ( x 2 / w s )rec t 2 ( y 2 / L s ) = | { A 0 e iφ( x 1 , y 1 ) } | 2 rec t 2 ( x 2 / w s )rec t 2 ( y 2 / L s )
rect( x 2 / w s )={ 1, 1 2 w s x 2 1 2 w s 0,otherwise
rect( y 2 / L s )={ 1, 1 2 L s x 2 1 2 L s 0,otherwise
E s ={ A 0 e iφ( x 1 , y 1 ) }rect( x 2 / w s )rect( y 2 / L s )
φ s ( x 3 , y 3 )= -1 {{ A 0 e iφ( x 1 , y 1 ) }rect( x 2 / w s )rect( y 2 / L s )}
d( sinα+sinβ )=mλ
d[sinα+sin( β+Δ θ x )]=m( λ 0 +Δ λ θ )
Δ θ x =Δ x θ f '
Δ x θ =Δ λ θ ( m f ' dcosβ ) =Δ λ θ D l
x= x 0 +Δ x θ =( λ 0 +Δ λ θ ) D l =λ D l
PSF(x,y)=PS F s ( x 2 , y 2 )PS F sp (x,y) | x= D l λ
PSF(x,y)=PS F s ( x 2 , y 2 ) | x= D l λ =img {PS F ta (x,y)rec t 2 ( x 2 / w s )rec t 2 ( y 2 / L s )} | x= D l λ =img { | { A 0 e iφ( x 1 , y 1 ) } | 2 rec t 2 ( x 2 / w s )rec t 2 ( y 2 / L s )} | x= D l λ
O(λ)=I(λ)PSF(λ) =I(λ) img{ | { A 0 e iφ( x 1 , y 1 ) } | 2 rec t 2 ( x 2 / w s )rec t 2 ( y 2 / L s )} d y | x= D l λ
O(λ)=0.5P
λ + ={O( λ + )=0.5P}
λ ={O( λ )=0.5P}
Δ λ φ = λ +φ λ φ = {O( λ + )=0.5P} φ {O( λ )=0.5P} φ
Δ λ φ=0 = {O( λ + )=0.5P} φ=0 {O( λ )=0.5P} φ=0
Δ λ φ0 = {O( λ + )=0.5P} φ0 {O( λ )=0.5P} φ0
κ=( {O( λ + )=0.5P} φ0 {O( λ )=0.5P} φ0 {O( λ + )=0.5P} φ=0 {O( λ )=0.5P} φ=0 1 )×100%
η= I φ0 I φ=0 ×100%
η= PSF (x,y) | φ0 dxdy PSF (x,y) | φ=0 dxdy ×100%
φ(r,θ)= j=0 N a j Z j (r,θ)
a j = W(r)φ(r,θ) Z j (r,θ) d 2 r
Z even j (r,θ)= n+1 R n m (r) 2 cos(mθ) Z odd j (r,θ)= n+1 R n m (r) 2 sin(mθ) }m0 Z j (r,θ)= n+1 R n 0 (r) m=0 W(r)={ 1/ π r1 0 r >1
R n m (r)= s=0 (nm)/2 (1) s (ns)! s![(n+m)/2s]![(nm)/2s] r n2s
D φ (ρ,θ)= | φ(r,θ)φ(r+ρ,θ) | 2
OTF(ρ,θ) = τ 0 (ρ,θ) e 0.5 D φ (ρ,θ)
τ 0 (ρ,θ)= 2 π { cos 1 ( ρ D ) ρ D [1 ( ρ D ) 2 ] 0.5 }
PSF={ OTF(ρ,θ) }
O(λ)=I(λ) | { 2 π { cos 1 ( ρ D ) ρ D [1 ( ρ D ) 2 ] 0.5 } e 0.5 D φ (ρ,θ) } | 2 rec t 2 ( x 2 / w s )rec t 2 ( y 2 / L s )d y | x=λ D l
κ=( {O( λ + )=0.5P} φ0 {O( λ )=0.5P} φ0 {O( λ + )=0.5P} φ=0 {O( λ )=0.5P} φ=0 1 )×100%
η= PSF (x,y) | φ0 dxdy PSF (x,y) | φ=0 dxdy ×100%

Metrics