Abstract

We demonstrate a strained SiGe variable optical attenuator (VOA) with a lateral pin junction which exhibits record-low injection-current for 20-dB attenuation. We optimize the distance between the highly doped p + and n + regions in the lateral pin junction to effectively inject electrons and holes, taking into account the propagation loss. In conjunction with the enhanced free-carrier absorption in strained SiGe, the SiGe VOA with the optimized lateral pin junction exhibits 20-dB attenuation by 20-mA/mm injection current, which is 1.5 times lower current density than that of the Si VOA. The SiGe VOA also shows better RF response than the Si VOA due to the short carrier lifetime in SiGe, allowing us to achieve efficient and fast attenuation modulation simultaneously. Furthermore, 2-GHz switching and error-free transmission of 4 × 12.5 Gbps WDM signal have been also achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides

Sungbong Park, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hidetaka Nishi, Hiroyuki Shinojima, and Sei-ichi Itabashi
Opt. Express 18(15) 15303-15310 (2010)

Low temperature Al2O3 surface passivation for carrier-injection SiGe optical modulator

Younghyun Kim, Jaehoon Han, Mitsuru Takenaka, and Shinichi Takagi
Opt. Express 22(7) 7458-7464 (2014)

Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuators

Sungbong Park, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, Hidetaka Nishi, Koji Yamada, Yasuhiko Ishikawa, Kazumi Wada, and Seiichi Itabashi
Opt. Express 18(8) 8412-8421 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, “Silicon CMOS-Integrated Nano-Photonics for Computer and Data Communications Beyond 100GElectrooptical Effects in Silicon,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
    [Crossref]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  4. J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  5. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref] [PubMed]
  6. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
    [Crossref]
  7. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing Polarization Diversity Grating Couplers in Silicon-on-Insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
    [Crossref]
  8. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
    [Crossref] [PubMed]
  9. D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23(6), 064006 (2008).
    [Crossref]
  10. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18(24), 25225–25231 (2010).
    [Crossref] [PubMed]
  11. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
    [Crossref]
  12. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
    [Crossref] [PubMed]
  13. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
    [Crossref]
  14. Y. Kim, J. Han, M. Takenaka, and S. Takagi, “Low temperature Al2O3 surface passivation for carrier-injection SiGe optical modulator,” Opt. Express 22(7), 7458–7464 (2014).
    [Crossref] [PubMed]
  15. R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE. J, Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  16. M. Takenaka and S. Takagi, “Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators,” IEEE. J, Quantum Electron. 48(1), 8–16 (2012).
    [Crossref]
  17. Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
    [PubMed]
  18. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  19. G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express 16(8), 5218–5226 (2008).
    [Crossref] [PubMed]
  20. K. Hammani, M. A. Ettabib, A. Bogris, A. Kapsalis, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, D. J. Richardson, and P. Petropoulos, “Optical properties of silicon germanium waveguides at telecommunication wavelengths,” Opt. Express 21(14), 16690–16701 (2013).
    [Crossref] [PubMed]

2014 (2)

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
[PubMed]

Y. Kim, J. Han, M. Takenaka, and S. Takagi, “Low temperature Al2O3 surface passivation for carrier-injection SiGe optical modulator,” Opt. Express 22(7), 7458–7464 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

M. Takenaka and S. Takagi, “Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators,” IEEE. J, Quantum Electron. 48(1), 8–16 (2012).
[Crossref]

Y. A. Vlasov, “Silicon CMOS-Integrated Nano-Photonics for Computer and Data Communications Beyond 100GElectrooptical Effects in Silicon,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
[Crossref]

2011 (1)

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

2010 (6)

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18(24), 25225–25231 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

2007 (1)

2005 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

2004 (1)

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE. J, Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Asghari, M.

Baets, R.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE. J, Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bogaerts, W.

Bogris, A.

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Brun, M.

Dong, J.

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23(6), 064006 (2008).
[Crossref]

Dong, P.

Dumon, P.

Ettabib, M. A.

Feng, D.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Gan, F.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Geis, M. W.

Grein, M. E.

Hammani, K.

Han, J.

Hata, M.

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
[PubMed]

Ippen, E. P.

Itabashi, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Käertner, F. X.

Kapsalis, A.

Kim, Y.

Y. Kim, J. Han, M. Takenaka, and S. Takagi, “Low temperature Al2O3 surface passivation for carrier-injection SiGe optical modulator,” Opt. Express 22(7), 7458–7464 (2014).
[Crossref] [PubMed]

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
[PubMed]

Kimerling, L. C.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Kou, R.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

Labeye, P.

Lennon, D. M.

Li, G.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liang, H.

Liao, S.

Lipson, M.

Liu, J. F.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Lyszczarz, T. M.

Manipatruni, S.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

McNab, S.

Michel, J.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Nicoletti, S.

Nishi, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

Orcutt, J. S.

Osada, T.

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
[PubMed]

Park, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

Petropoulos, P.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Richardson, D. J.

Roelkens, G.

Schmidt, B.

Schulein, R. T.

Shafiiha, R.

Shakya, J.

Shinojima, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Smith, B. T.

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23(6), 064006 (2008).
[Crossref]

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
[Crossref] [PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE. J, Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Spector, S. J.

Syvridis, D.

Takagi, S.

Y. Kim, J. Han, M. Takenaka, and S. Takagi, “Low temperature Al2O3 surface passivation for carrier-injection SiGe optical modulator,” Opt. Express 22(7), 7458–7464 (2014).
[Crossref] [PubMed]

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
[PubMed]

M. Takenaka and S. Takagi, “Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators,” IEEE. J, Quantum Electron. 48(1), 8–16 (2012).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Takenaka, M.

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
[PubMed]

Y. Kim, J. Han, M. Takenaka, and S. Takagi, “Low temperature Al2O3 surface passivation for carrier-injection SiGe optical modulator,” Opt. Express 22(7), 7458–7464 (2014).
[Crossref] [PubMed]

M. Takenaka and S. Takagi, “Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators,” IEEE. J, Quantum Electron. 48(1), 8–16 (2012).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Van Laere, F.

Van Thourhout, D.

Vlasov, Y.

Vlasov, Y. A.

Y. A. Vlasov, “Silicon CMOS-Integrated Nano-Photonics for Computer and Data Communications Beyond 100GElectrooptical Effects in Silicon,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Xu, Q.

Yamada, K.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

Yoon, J. U.

Zheng, D. W.

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
[Crossref] [PubMed]

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23(6), 064006 (2008).
[Crossref]

Zheng, X.

Zhou, G. R.

IEEE Commun. Mag. (1)

Y. A. Vlasov, “Silicon CMOS-Integrated Nano-Photonics for Computer and Data Communications Beyond 100GElectrooptical Effects in Silicon,” IEEE Commun. Mag. 50(2), S67–S72 (2012).
[Crossref]

IEEE J. Sel. Top. Quant. (2)

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications,” IEEE J. Sel. Top. Quant. 17(3), 516–525 (2011).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005).
[Crossref]

IEEE. J, Quantum Electron. (2)

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE. J, Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

M. Takenaka and S. Takagi, “Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators,” IEEE. J, Quantum Electron. 48(1), 8–16 (2012).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and Polarization-Independent Variable Optical Attenuator Based on a Silicon Wire Waveguide with a Carrier Injection Structure,” Jpn. J. Appl. Phys. 49(4), 04DG20 (2010).
[Crossref]

Nat. Photonics (3)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Opt. Express (8)

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[Crossref] [PubMed]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18(24), 25225–25231 (2010).
[Crossref] [PubMed]

K. Hammani, M. A. Ettabib, A. Bogris, A. Kapsalis, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, D. J. Richardson, and P. Petropoulos, “Optical properties of silicon germanium waveguides at telecommunication wavelengths,” Opt. Express 21(14), 16690–16701 (2013).
[Crossref] [PubMed]

Y. Kim, J. Han, M. Takenaka, and S. Takagi, “Low temperature Al2O3 surface passivation for carrier-injection SiGe optical modulator,” Opt. Express 22(7), 7458–7464 (2014).
[Crossref] [PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref] [PubMed]

G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express 16(8), 5218–5226 (2008).
[Crossref] [PubMed]

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
[Crossref] [PubMed]

Sci Rep (1)

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” Sci Rep 4, 4683 (2014).
[PubMed]

Semicond. Sci. Technol. (1)

D. W. Zheng, B. T. Smith, J. Dong, and M. Asghari, “On the effective carrier lifetime of a silicon p-i-n diode optical modulator,” Semicond. Sci. Technol. 23(6), 064006 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of strained SiGe VOA with (a) long and (b) short lateral pin junction-distance.
Fig. 2
Fig. 2 Propagation loss as a function of the distance between the edge of the waveguide mesa and the highly-doped region.
Fig. 3
Fig. 3 Process flow of strained SiGe VOA with lateral pin junction. (a) Si and SiGe growth on SOI, (b) waveguide formation (c) pin junction formation by ion implantation, and (d) Al contact formation.
Fig. 4
Fig. 4 SEM image of fabricated strained SiGe VOA.
Fig. 5
Fig. 5 (a) Attenuation characteristics as a function of current density for Si and SiGe VOAs and (b) benchmark of Si and SiGe VOAs.
Fig. 6
Fig. 6 Wavelength dependence of (a) transmission and (b) attenuation of SiGe VOA.
Fig. 7
Fig. 7 I-V characteristics of pin junctions of Si and SiGe VOAs.
Fig. 8
Fig. 8 (a) Frequency response and (b) sine-wave response at 2 GHz of SiGe VOA.
Fig. 9
Fig. 9 (a) Experiment and simulation results of Attenuation in SiGe and Si VOAs as a function of current denstiy and (b) Effective lifetime for SiGe and Si VOAs.
Fig. 10
Fig. 10 Experimental setup for optical transmission test of 12.5 Gb/s PRBS signal.
Fig. 11
Fig. 11 BER after transmission of 4 × 12.5 Gb/s WDM signal through SiGe VOA.

Metrics