Abstract

This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 103 over 25-km SMF transmission followed by 3-m wireless transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

Lei Deng, Xiaodan Pang, Ying Zhao, M. B. Othman, Jesper Bevensee Jensen, Darko Zibar, Xianbin Yu, Deming Liu, and Idelfonso Tafur Monroy
Opt. Express 20(4) 4369-4375 (2012)

High spectral efficient W-band optical/wireless system employing Single-Sideband Single-Carrier Modulation

Chun-Hung Ho, Chun-Ting Lin, Yu-Hsuan Cheng, Hou-Tzu Huang, Chia-Chien Wei, and Sien Chi
Opt. Express 22(4) 3911-3917 (2014)

2 × 2 MIMO radio-over-fiber system at 60 GHz employing frequency domain equalization

Chun-Ting Lin, Anthony Ng’oma, Wei-Yuan Lee, Chia-Chien Wei, Chih-Yun Wang, Tsung-Hung Lu, Jyehong Chen, Wen-Jr Jiang, and Chun-Hung Ho
Opt. Express 20(1) 562-567 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microwave Mag. 10(3), 104–112 (2009).
    [Crossref]
  2. X. D. Pang, Y. Zhao, L. Deng, M. B. Othman, X. B. Yu, J. B. Jensen, D. Zibar, and I. T. Monroy, “Seamless Translation of Optical Fiber PolMux-OFDM into a 2×2 MIMO Wireless Transmission Enabled by Digital Training-Based Fiber-Wireless Channel Estimation,” in Proceedings of the IEEE Communications and Photomics Conference and Exhibition, ACP, Asia, INSPEC Accession Number. 12784470, (2011), pp. 1–6.
  3. A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, Y. Yasummura, and K. Kitatama, “Coherent Optical and Radio Seamless Transmission Based on DPS-Aided Radio-over-Fiber Technology,” Opt. Fiber Conf., Los Angeles, USA, Plenary Talk (2013).
  4. L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
    [Crossref]
  5. C. T. Lin, Y. M. Lin, J. Y. Chen, S. P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008).
    [Crossref]
  6. H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).
  7. S. H. Han and J. H. Lee, “An Overview of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
    [Crossref]
  8. J. Campello, “Optimal Discrete Bit Loading for Multicarrier Modulation Systems,” International Symposium on Information Theory (ISIT), 193 (1998).
    [Crossref]

2014 (1)

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

2012 (1)

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

2009 (1)

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microwave Mag. 10(3), 104–112 (2009).
[Crossref]

2008 (1)

2005 (1)

S. H. Han and J. H. Lee, “An Overview of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
[Crossref]

Chang, G.-K.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

Chen, J. Y.

Cheng, Y. H.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

Chi, N.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

Chi, S.

Dai, S. P.

Dong, Z.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

Han, S. H.

S. H. Han and J. H. Lee, “An Overview of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
[Crossref]

Ho, C. H.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

Huang, H. T.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

Lee, J. H.

S. H. Han and J. H. Lee, “An Overview of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
[Crossref]

Li, X.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

Liang, W. L.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

Lin, C. T.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

C. T. Lin, Y. M. Lin, J. Y. Chen, S. P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008).
[Crossref]

Lin, Y. M.

Ng’oma, A.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

Peng, P.-C.

Shao, Y.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

Shih, P. T.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

C. T. Lin, Y. M. Lin, J. Y. Chen, S. P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008).
[Crossref]

Tao, L.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

Wei, C. C.

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

Wells, J.

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microwave Mag. 10(3), 104–112 (2009).
[Crossref]

Yu, J.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

Zhang, J.

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

IEEE Microwave Mag. (1)

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microwave Mag. 10(3), 104–112 (2009).
[Crossref]

IEEE Photon. J. (1)

H. T. Huang, P. T. Shih, C. T. Lin, Y. H. Cheng, W. L. Liang, C. H. Ho, C. C. Wei, and A. Ng’oma, “2 x 2 MIMO OFDM-RoF System Employing LMS-Based Equalizer With I/Q Imbalance Compensation at 60 GHz,” IEEE Photon. J. 6(3), 7200307 (2014).

IEEE Photon. Technol. Lett. (1)

L. Tao, Z. Dong, J. Yu, N. Chi, J. Zhang, X. Li, Y. Shao, and G.-K. Chang, “Experimental Demonstration of 48-Gb/s PDM-QPSK Radio-Over-Fiber System Over 40-GHz mm-Wave MIMO Wireless Transmission,” IEEE Photon. Technol. Lett. 24(24), 2276–2279 (2012).
[Crossref]

IEEE Wirel. Commun. (1)

S. H. Han and J. H. Lee, “An Overview of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission,” IEEE Wirel. Commun. 12(2), 56–65 (2005).
[Crossref]

Opt. Express (1)

Other (3)

X. D. Pang, Y. Zhao, L. Deng, M. B. Othman, X. B. Yu, J. B. Jensen, D. Zibar, and I. T. Monroy, “Seamless Translation of Optical Fiber PolMux-OFDM into a 2×2 MIMO Wireless Transmission Enabled by Digital Training-Based Fiber-Wireless Channel Estimation,” in Proceedings of the IEEE Communications and Photomics Conference and Exhibition, ACP, Asia, INSPEC Accession Number. 12784470, (2011), pp. 1–6.

A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, Y. Yasummura, and K. Kitatama, “Coherent Optical and Radio Seamless Transmission Based on DPS-Aided Radio-over-Fiber Technology,” Opt. Fiber Conf., Los Angeles, USA, Plenary Talk (2013).

J. Campello, “Optimal Discrete Bit Loading for Multicarrier Modulation Systems,” International Symposium on Information Theory (ISIT), 193 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic principle of proposed SCM RoF system. Insets (a)-(f) and (i)-(vii) show the electrical spectrums and optical spectrums.
Fig. 2
Fig. 2 Experimental setup of 2x2 MIMO SCM RoF system at 60GHz. Optical spectrum (i), and (ii) are obtained at the outputs of interleaver.
Fig. 3
Fig. 3 (i) Transmitter and (ii) Receiver offline DSP program.
Fig. 4
Fig. 4 Simulation results of CCDF.
Fig. 5
Fig. 5 BER curves for 55.875-Gbits/s 16-QAM OFDM signals.
Fig. 6
Fig. 6 Results of bit-loading with 7-GHz bandwidth OFDM signals for 61.5Gbits/s transmission over 25-km SMF including (a) bit formats and (b) SNRs.
Fig. 7
Fig. 7 Constellations with bit-loading algorithm over 25-km SMF transmission.

Metrics