Abstract

A watt-level output passively mode-locked Tm:LuAG bulk laser with an InGaAs semiconductor saturable absorber mirror (SESAM) is demonstrated for the first time. A maximum average output power of 1.21 W at 2022.9 nm has been achieved with a pulse duration of 38 ps and a repetition rate of 129.2 MHz. The results indicate the potential of Tm:LuAG crystals as candidate for realizing high power ultrafast lasers at 2 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively mode-locked Nd:LuAG laser at 1338 nm

T. Feng, K. Yang, G. Li, S. Zhao, D. Li, T. Li, W. Qiao, C. Liu, X. Chen, X. Xu, L. Zheng, J. Xu, and R. Lan
Opt. Mater. Express 6(1) 1-7 (2016)

Thulium doped LuAG ceramics for passively mode locked lasers

Yicheng Wang, Ruijun Lan, Xavier Mateos, Jiang Li, Chaoyu Li, Soile Suomalainen, Antti Härkönen, Mircea Guina, Valentin Petrov, and Uwe Griebner
Opt. Express 25(6) 7084-7091 (2017)

Mode-locked Tm,Ho:YAP laser around 2.1 μm

K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao
Opt. Express 21(2) 1574-1580 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
    [Crossref] [PubMed]
  2. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, CW 2.066-um Ho:YLF laser for remote sensing of atmospheric CO(2) and H(2)O,” Appl. Opt. 37(36), 8460–8476 (1998).
    [Crossref] [PubMed]
  4. P. Budni, L. Pomeranz, M. Lemons, C. Miller, J. Mosto, and E. Chicklis, “Efficient mid-infrared laser using 1.9 μm pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  5. K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. V. Grimm, M. Helm, K. Biermann, and H. Künzel, “Passively mode-locked Tm,Ho:YAG laser at 2 µm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
    [Crossref] [PubMed]
  6. H. Cheng, X. D. Jiang, X. P. Hu, M. L. Zhong, X. J. Lv, and S. N. Zhu, “Diode-pumped 1988-nm Tm:YAP laser mode-locked by intracavity second-harmonic generation in periodically poled LiNbO₃,” Opt. Lett. 39(7), 2187–2190 (2014).
    [PubMed]
  7. K. J. Yang, H. Bromberger, D. Heinecke, C. Kölbl, H. Schäfer, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Efficient continuous wave and passively mode-locked Tm-doped crystalline silicate laser,” Opt. Express 20(17), 18630–18635 (2012).
    [Crossref] [PubMed]
  8. A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 µW,” Opt. Lett. 34(17), 2587–2589 (2009).
    [Crossref] [PubMed]
  9. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett. 35(18), 3027–3029 (2010).
    [PubMed]
  10. F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers,” Opt. Express 18(21), 22090–22098 (2010).
    [Crossref] [PubMed]
  11. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 µm,” Opt. Lett. 35(2), 172–174 (2010).
    [Crossref] [PubMed]
  12. A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
    [Crossref] [PubMed]
  13. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009).
    [Crossref] [PubMed]
  14. G. Xie, J. Ma, P. Lv, W. Gao, P. Yuan, L. Qian, H. Yu, H. Zhang, J. Wang, and D. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength [Invited],” Opt. Mater. Express 2(6), 878–883 (2012).
  15. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37(11), 2085–2087 (2012).
    [Crossref] [PubMed]
  16. J. Ma, G. Xie, and J. Zhang, “Passively mode-locked Tm: YAG ceramic laser based on graphene,” IEEE J. Sel. Top. Quantum Electron. 21, 1100806 (2015).
  17. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
    [Crossref] [PubMed]
  18. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
    [Crossref] [PubMed]
  19. J. D. Kmetec, T. S. Kubo, T. J. Kane, and C. J. Grund, “Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals,” Opt. Lett. 19(3), 186–188 (1994).
    [Crossref] [PubMed]
  20. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers,” Opt. Lett. 15(9), 486–488 (1990).
    [Crossref] [PubMed]
  21. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
    [Crossref] [PubMed]
  22. FLIR Inc, “Laser Materials Lu3Al5O12”, http://www.scientificmaterials.com/products/luag_Lu3Al5O12_lutetium_aluminum.php .
  23. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [PubMed]
  24. C. Wu, Y. Ju, Y. Li, Z. Wang, and Y. Wang, “Diode-pumped Tm:LuAG laser at room temperature,” Chin. Opt. Lett. 6, 415–416 (2008).
    [Crossref]
  25. T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
    [Crossref]
  26. Y. Li, Y. Wang, B. Yao, and Y. Ju, “Widely Tunable Tm:YAG, Tm:YAP, Tm:LuAG, Tm:GdVO4, Tm,Ho:GdVO4 and Tm, Ho:YLF Lasers,” CLEO, CTuAA7 (2008).
  27. F. Chen, C. T. Wu, Y. L. Ju, B. Q. Yao, and Y. Z. Wang, “Diode-pumped Q-switched Tm:LuAG ring laser operation at room temperature,” Laser Phys. 22(2), 371–374 (2012).
    [Crossref]
  28. J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
    [Crossref]
  29. K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Mode-locked Tm,Ho:YAP laser around 2.1 μm,” Opt. Express 21(2), 1574–1580 (2013).
    [Crossref] [PubMed]

2015 (4)

J. Ma, G. Xie, and J. Zhang, “Passively mode-locked Tm: YAG ceramic laser based on graphene,” IEEE J. Sel. Top. Quantum Electron. 21, 1100806 (2015).

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (5)

2011 (2)

2010 (5)

2009 (2)

2008 (2)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. Wu, Y. Ju, Y. Li, Z. Wang, and Y. Wang, “Diode-pumped Tm:LuAG laser at room temperature,” Chin. Opt. Lett. 6, 415–416 (2008).
[Crossref]

2002 (1)

2000 (1)

1998 (1)

1994 (1)

1990 (1)

Aguiló, M.

Barnes, N. P.

Beil, K.

Biermann, K.

Bromberger, H.

Brown, C. T.

Brown, C. T. A.

Budni, P.

Calvez, S.

Carvajal, J. J.

Cascales, C.

Chen, F.

F. Chen, C. T. Wu, Y. L. Ju, B. Q. Yao, and Y. Z. Wang, “Diode-pumped Q-switched Tm:LuAG ring laser operation at room temperature,” Laser Phys. 22(2), 371–374 (2012).
[Crossref]

Cheng, H.

Chicklis, E.

Cho, W. B.

Choi, S. Y.

Clarkson, W. A.

Dawson, M. D.

Dekorsy, T.

Díaz, F.

Esterowitz, L.

Feng, T.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Fredrich-Thornton, S. T.

Fuhrberg, P.

Fusari, F.

Gao, W.

Gao, W. L.

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Griebner, U.

Grimm, C. V.

Grund, C. J.

Gupta, J. A.

Han, X.

Hanna, D. C.

He, J.

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

Heinecke, D.

Heinecke, D. C.

Helm, M.

Hou, J.

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

Hu, X. P.

Huber, G.

Jha, A.

Jiang, X. D.

Jose, G.

Ju, Y.

Ju, Y. L.

F. Chen, C. T. Wu, Y. L. Ju, B. Q. Yao, and Y. Z. Wang, “Diode-pumped Q-switched Tm:LuAG ring laser operation at room temperature,” Laser Phys. 22(2), 371–374 (2012).
[Crossref]

Kane, T. J.

Killinger, D. K.

Kisel, V. E.

Kmetec, J. D.

Kölbl, C.

Kong, L. C.

Koopmann, P.

Kränkel, C.

Kubo, T. S.

Kuleshov, N. V.

Künzel, H.

Kurilchik, S. V.

Lagatsky, A. A.

Lamrini, S.

Lee, S.

Lemons, M.

Li, T.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Li, Y.

Lou, F.

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

Lv, P.

Lv, X. J.

Ma, J.

Mateos, X.

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Miller, C.

Mosto, J.

Neuhaus, J.

Nilsson, J.

Petermann, K.

Peters, R.

Petrov, V.

Pomeranz, L.

Pujol, M. C.

Qian, L.

Qian, L. J.

Qiao, W.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Qin, Z. P.

Rotermund, F.

Ruf, H.

Schäfer, H.

Schmidt, A.

Scholle, K.

Serrano, M. D.

Sibbett, W.

Steinmeyer, G.

Stoneman, R. C.

Su, L.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Su, X.

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

Taczak, T. M.

Tang, D.

Tang, D. Y.

Tellkamp, F.

Turner, P. W.

Wang, J.

Wang, J. Y.

Wang, Q.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Wang, Y.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

C. Wu, Y. Ju, Y. Li, Z. Wang, and Y. Wang, “Diode-pumped Tm:LuAG laser at room temperature,” Chin. Opt. Lett. 6, 415–416 (2008).
[Crossref]

Wang, Y. Z.

F. Chen, C. T. Wu, Y. L. Ju, B. Q. Yao, and Y. Z. Wang, “Diode-pumped Q-switched Tm:LuAG ring laser operation at room temperature,” Laser Phys. 22(2), 371–374 (2012).
[Crossref]

Wang, Z.

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

C. Wu, Y. Ju, Y. Li, Z. Wang, and Y. Wang, “Diode-pumped Tm:LuAG laser at room temperature,” Chin. Opt. Lett. 6, 415–416 (2008).
[Crossref]

Wu, C.

Wu, C. T.

F. Chen, C. T. Wu, Y. L. Ju, B. Q. Yao, and Y. Z. Wang, “Diode-pumped Q-switched Tm:LuAG ring laser operation at room temperature,” Laser Phys. 22(2), 371–374 (2012).
[Crossref]

Xie, G.

J. Ma, G. Xie, and J. Zhang, “Passively mode-locked Tm: YAG ceramic laser based on graphene,” IEEE J. Sel. Top. Quantum Electron. 21, 1100806 (2015).

G. Xie, J. Ma, P. Lv, W. Gao, P. Yuan, L. Qian, H. Yu, H. Zhang, J. Wang, and D. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength [Invited],” Opt. Mater. Express 2(6), 878–883 (2012).

Xie, G. Q.

Xu, J.

Xu, X.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Xu, X. D.

Yang, K.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. V. Grimm, M. Helm, K. Biermann, and H. Künzel, “Passively mode-locked Tm,Ho:YAG laser at 2 µm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
[Crossref] [PubMed]

Yang, K. J.

Yao, B. Q.

F. Chen, C. T. Wu, Y. L. Ju, B. Q. Yao, and Y. Z. Wang, “Diode-pumped Q-switched Tm:LuAG ring laser operation at room temperature,” Laser Phys. 22(2), 371–374 (2012).
[Crossref]

Yeom, D. I.

Yim, J. H.

Yu, H.

Yu, H. H.

Yuan, P.

Zaldo, C.

Zhang, B.

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

Zhang, H.

Zhang, H. J.

Zhang, J.

J. Ma, G. Xie, and J. Zhang, “Passively mode-locked Tm: YAG ceramic laser based on graphene,” IEEE J. Sel. Top. Quantum Electron. 21, 1100806 (2015).

Zhao, G. J.

Zhao, J.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Zhao, R.

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

Zhao, S.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Zhao, S. Z.

Zheng, L.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

Zheng, L. H.

Zhong, M. L.

Zhu, S. N.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Ma, G. Xie, and J. Zhang, “Passively mode-locked Tm: YAG ceramic laser based on graphene,” IEEE J. Sel. Top. Quantum Electron. 21, 1100806 (2015).

IEEE Photon. Technol. Lett. (1)

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photon. Technol. Lett. 27, 7–10 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

F. Chen, C. T. Wu, Y. L. Ju, B. Q. Yao, and Y. Z. Wang, “Diode-pumped Q-switched Tm:LuAG ring laser operation at room temperature,” Laser Phys. 22(2), 371–374 (2012).
[Crossref]

Nat. Photonics (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, and J. He, “High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM,” Opt. Commun. 347, 88–91 (2015).
[Crossref]

Opt. Express (8)

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009).
[Crossref] [PubMed]

K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. V. Grimm, M. Helm, K. Biermann, and H. Künzel, “Passively mode-locked Tm,Ho:YAG laser at 2 µm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
[Crossref] [PubMed]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[PubMed]

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers,” Opt. Express 18(21), 22090–22098 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
[Crossref] [PubMed]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
[Crossref] [PubMed]

K. J. Yang, H. Bromberger, D. Heinecke, C. Kölbl, H. Schäfer, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Efficient continuous wave and passively mode-locked Tm-doped crystalline silicate laser,” Opt. Express 20(17), 18630–18635 (2012).
[Crossref] [PubMed]

K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Mode-locked Tm,Ho:YAP laser around 2.1 μm,” Opt. Express 21(2), 1574–1580 (2013).
[Crossref] [PubMed]

Opt. Lett. (10)

H. Cheng, X. D. Jiang, X. P. Hu, M. L. Zhong, X. J. Lv, and S. N. Zhu, “Diode-pumped 1988-nm Tm:YAP laser mode-locked by intracavity second-harmonic generation in periodically poled LiNbO₃,” Opt. Lett. 39(7), 2187–2190 (2014).
[PubMed]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
[Crossref] [PubMed]

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37(11), 2085–2087 (2012).
[Crossref] [PubMed]

A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett. 35(18), 3027–3029 (2010).
[PubMed]

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 µW,” Opt. Lett. 34(17), 2587–2589 (2009).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 µm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref] [PubMed]

J. D. Kmetec, T. S. Kubo, T. J. Kane, and C. J. Grund, “Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals,” Opt. Lett. 19(3), 186–188 (1994).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Other (2)

Y. Li, Y. Wang, B. Yao, and Y. Ju, “Widely Tunable Tm:YAG, Tm:YAP, Tm:LuAG, Tm:GdVO4, Tm,Ho:GdVO4 and Tm, Ho:YLF Lasers,” CLEO, CTuAA7 (2008).

FLIR Inc, “Laser Materials Lu3Al5O12”, http://www.scientificmaterials.com/products/luag_Lu3Al5O12_lutetium_aluminum.php .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of the passive CWML Tm:LuAG laser
Fig. 2
Fig. 2 The power performance of the (a) CW and (b) CWML Tm:LuAG laser
Fig. 3
Fig. 3 RF spectrum of CWML Tm:LuAG laser.
Fig. 4
Fig. 4 Autocorrelation trace of the mode-locked Tm:LuAG laser. Inset: the corresponding spectrum centered at 2022.9 nm.

Metrics