Abstract

Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip copper–dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors

Laurent Frey, Lilian Masarotto, Patrick Gros D’Aillon, Catherine Pellé, Marilyn Armand, Michel Marty, Clémence Jamin-Mornet, Sandrine Lhostis, and Olivier Le Briz
Appl. Opt. 53(20) 4493-4502 (2014)

Spatio-spectral binary patterns based on multispectral filter arrays for texture classification

Sofiane Mihoubi, Olivier Losson, Benjamin Mathon, and Ludovic Macaire
J. Opt. Soc. Am. A 35(9) 1532-1542 (2018)

Pixel-sized infrared filters for a multispectral focal plane array

Antoine Bierret, Grégory Vincent, Julien Jaeck, Jean-Luc Pelouard, Fabrice Pardo, Florence De La Barrière, and Riad Haïdar
Appl. Opt. 57(3) 391-395 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics 3(11), 627–629 (2009).
    [Crossref]
  2. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
    [Crossref]
  3. S. Junger, N. Verwaal, W. Tschekalinskij, and N. Weber, “Near-infrared cut-off filters based on CMOS nanostructures for ambient light sensors and image sensors,” Proc. SPIE 8994, 899441K (2014).
  4. H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
    [Crossref] [PubMed]
  5. R. L. Baer, W. D. Holland, J. Holm, and P. Vora, “Comparison of primary and complementary color filters for CCD-based digital photography,” Proc. SPIE 3650, 16–25 (1999).
    [Crossref]
  6. J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer for operation at visible wavelengths,” Proc. Int. Elec. Dev. Meeting 467–470 (1998).
    [Crossref]
  7. B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multispectral imager with a monolithically integrated, per-pixel filter mosaic,” Proc. SPIE 8974, 89740L (2014).
    [Crossref]
  8. D. Lerose, E. K. S. Hei, B. C. Ching, M. Sterger, L. C. Yaw, F. M. Schulze, F. Schmidt, A. Schmidt, and K. Bach, “CMOS-integrated geometrically tunable optical filters,” Appl. Opt. 52(8), 1655–1662 (2013).
    [Crossref] [PubMed]
  9. S. W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, “Integrated optical filter arrays fabricated by using the combinatorial etching technique,” Opt. Lett. 31(3), 332–334 (2006).
    [Crossref] [PubMed]
  10. S. Kaushik and B. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
    [Crossref]
  11. K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
    [Crossref] [PubMed]
  12. S. Boutami, Y. Désières, L. Frey, and G. Grand, “Optical filter suitable for treating a ray with variable incidence and detector including such a filter,” U.S. patent 2011/290982A1 (1 December 2011).
  13. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
    [Crossref]
  14. S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: A survey (Review),” IEEE Sens. J. 11(9), 1917–1926 (2011).
    [Crossref]
  15. H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics Publishing, 2001).
  16. J. C. M. Garnett, “Colors in metal glasses and metal films,” Trans. R. Soc. A 203(359-371), 385–420 (1904).
    [Crossref]
  17. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com
  18. L. Frey, L. Masarotto, P. Gros D’Aillon, C. Pellé, M. Armand, M. Marty, C. Jamin-Mornet, S. Lhostis, and O. Le Briz, “On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors,” Appl. Opt. 53(20), 4493–4502 (2014).
    [Crossref] [PubMed]
  19. DxO color shading correction http://www.dxo.com/intl/embedded-imaging/image-signal-processor-isp/dxo-autocls
  20. J. W. Seo and J. H. Lee, “A novel anti-vignetting method for color shading artifact suppression,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2013), 6486881.
  21. X. Gagnard and N. Hotellier, “Through silicon via implementation in CMOS image sensor product,” in 3D Integration for VLSI Systems, C. S. Tan, K. N. Chen, S. J. Koester, ed. (Pan Stanford Publishing Pte. Ltd., 2011).
  22. Y. Inaba, M. Kasano, S. Yoshida, and T. Yamaguchi, “Solid-state imaging device, manufacturing method of solid-state imaging device, and camera employing same,” U.S. patent 7759679B2 (20 July 2010).
  23. L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19(14), 13073–13080 (2011).
    [Crossref] [PubMed]
  24. S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
    [Crossref]
  25. P. Parrein, A. Landragin-Frassati, and J. M. Dinten, “Reconstruction method and optimal design of an interferometric spectrometer,” Appl. Spectrosc. 63(7), 786–790 (2009).
    [Crossref] [PubMed]
  26. J. Oliver, W. B. Lee, and H. N. Lee, “Filters with random transmittance for improving resolution in filter-array-based spectrometers,” Opt. Express 21(4), 3969–3989 (2013).
    [Crossref] [PubMed]

2014 (3)

S. Junger, N. Verwaal, W. Tschekalinskij, and N. Weber, “Near-infrared cut-off filters based on CMOS nanostructures for ambient light sensors and image sensors,” Proc. SPIE 8994, 899441K (2014).

B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multispectral imager with a monolithically integrated, per-pixel filter mosaic,” Proc. SPIE 8974, 89740L (2014).
[Crossref]

L. Frey, L. Masarotto, P. Gros D’Aillon, C. Pellé, M. Armand, M. Marty, C. Jamin-Mornet, S. Lhostis, and O. Le Briz, “On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors,” Appl. Opt. 53(20), 4493–4502 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

2011 (2)

2010 (1)

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

2009 (2)

2006 (1)

2001 (1)

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

1999 (1)

R. L. Baer, W. D. Holland, J. Holm, and P. Vora, “Comparison of primary and complementary color filters for CCD-based digital photography,” Proc. SPIE 3650, 16–25 (1999).
[Crossref]

1995 (1)

S. Kaushik and B. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

1904 (1)

J. C. M. Garnett, “Colors in metal glasses and metal films,” Trans. R. Soc. A 203(359-371), 385–420 (1904).
[Crossref]

Alenya, G.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: A survey (Review),” IEEE Sens. J. 11(9), 1917–1926 (2011).
[Crossref]

Armand, M.

Bach, K.

Baer, R. L.

R. L. Baer, W. D. Holland, J. Holm, and P. Vora, “Comparison of primary and complementary color filters for CCD-based digital photography,” Proc. SPIE 3650, 16–25 (1999).
[Crossref]

Baik, K. H.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Bannon, D.

D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics 3(11), 627–629 (2009).
[Crossref]

Chen, Q.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

Chen, X.

Ching, B. C.

Chitnis, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Collins, S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

Crozier, K. B.

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[Crossref] [PubMed]

Cumming, D. R. S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

Das, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Dinten, J. M.

Drysdale, T. D.

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Foix, S.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: A survey (Review),” IEEE Sens. J. 11(9), 1917–1926 (2011).
[Crossref]

Frey, L.

Garnett, J. C. M.

J. C. M. Garnett, “Colors in metal glasses and metal films,” Trans. R. Soc. A 203(359-371), 385–420 (1904).
[Crossref]

Geelen, B.

B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multispectral imager with a monolithically integrated, per-pixel filter mosaic,” Proc. SPIE 8974, 89740L (2014).
[Crossref]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Grant, J.

Gros D’Aillon, P.

Hei, E. K. S.

Hérault, D.

Holland, W. D.

R. L. Baer, W. D. Holland, J. Holm, and P. Vora, “Comparison of primary and complementary color filters for CCD-based digital photography,” Proc. SPIE 3650, 16–25 (1999).
[Crossref]

Holm, J.

R. L. Baer, W. D. Holland, J. Holm, and P. Vora, “Comparison of primary and complementary color filters for CCD-based digital photography,” Proc. SPIE 3650, 16–25 (1999).
[Crossref]

Jamin-Mornet, C.

Jeong, B. S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Junger, S.

S. Junger, N. Verwaal, W. Tschekalinskij, and N. Weber, “Near-infrared cut-off filters based on CMOS nanostructures for ambient light sensors and image sensors,” Proc. SPIE 8994, 899441K (2014).

Kaushik, S.

S. Kaushik and B. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

Lambers, E. S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Lambrechts, A.

B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multispectral imager with a monolithically integrated, per-pixel filter mosaic,” Proc. SPIE 8974, 89740L (2014).
[Crossref]

Landragin-Frassati, A.

Le Briz, O.

Lee, H. N.

Lee, J. H.

J. W. Seo and J. H. Lee, “A novel anti-vignetting method for color shading artifact suppression,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2013), 6486881.

Lee, K. P.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Lee, W. B.

Lerose, D.

Lhostis, S.

Lu, W.

Marty, M.

Masarotto, L.

Michailos, J.

Norasetthekul, S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Norton, D. P.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Oliver, J.

Park, H.

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[Crossref] [PubMed]

Park, P. Y.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Parrein, P.

Pearton, S. J.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Pellé, C.

Raby, J.

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Schmidt, A.

Schmidt, F.

Schulze, F. M.

Seo, J. W.

J. W. Seo and J. H. Lee, “A novel anti-vignetting method for color shading artifact suppression,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2013), 6486881.

Shin, J. H.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Shishodia, V.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

Stallard, B.

S. Kaushik and B. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

Sterger, M.

Tack, N.

B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multispectral imager with a monolithically integrated, per-pixel filter mosaic,” Proc. SPIE 8974, 89740L (2014).
[Crossref]

Torras, C.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: A survey (Review),” IEEE Sens. J. 11(9), 1917–1926 (2011).
[Crossref]

Tschekalinskij, W.

S. Junger, N. Verwaal, W. Tschekalinskij, and N. Weber, “Near-infrared cut-off filters based on CMOS nanostructures for ambient light sensors and image sensors,” Proc. SPIE 8994, 899441K (2014).

Verwaal, N.

S. Junger, N. Verwaal, W. Tschekalinskij, and N. Weber, “Near-infrared cut-off filters based on CMOS nanostructures for ambient light sensors and image sensors,” Proc. SPIE 8994, 899441K (2014).

Vora, P.

R. L. Baer, W. D. Holland, J. Holm, and P. Vora, “Comparison of primary and complementary color filters for CCD-based digital photography,” Proc. SPIE 3650, 16–25 (1999).
[Crossref]

Walls, K.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, S. W.

Wang, Z.

Weber, N.

S. Junger, N. Verwaal, W. Tschekalinskij, and N. Weber, “Near-infrared cut-off filters based on CMOS nanostructures for ambient light sensors and image sensors,” Proc. SPIE 8994, 899441K (2014).

Wu, Y.

Yaw, L. C.

Appl. Opt. (2)

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185(1-2), 27–33 (2001).
[Crossref]

IEEE Sens. J. (1)

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: A survey (Review),” IEEE Sens. J. 11(9), 1917–1926 (2011).
[Crossref]

Nat. Photonics (1)

D. Bannon, “Hyperspectral imaging: Cubes and slices,” Nat. Photonics 3(11), 627–629 (2009).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Opt. Lett. (1)

Plasmonics (1)

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Proc. SPIE (4)

S. Junger, N. Verwaal, W. Tschekalinskij, and N. Weber, “Near-infrared cut-off filters based on CMOS nanostructures for ambient light sensors and image sensors,” Proc. SPIE 8994, 899441K (2014).

S. Kaushik and B. Stallard, “Two-dimensional array of optical interference filters produced by lithographic alterations of the index of refraction,” Proc. SPIE 2532, 276–281 (1995).
[Crossref]

R. L. Baer, W. D. Holland, J. Holm, and P. Vora, “Comparison of primary and complementary color filters for CCD-based digital photography,” Proc. SPIE 3650, 16–25 (1999).
[Crossref]

B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multispectral imager with a monolithically integrated, per-pixel filter mosaic,” Proc. SPIE 8974, 89740L (2014).
[Crossref]

Sci. Rep. (1)

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[Crossref] [PubMed]

Trans. R. Soc. A (1)

J. C. M. Garnett, “Colors in metal glasses and metal films,” Trans. R. Soc. A 203(359-371), 385–420 (1904).
[Crossref]

Other (8)

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com

H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics Publishing, 2001).

S. Boutami, Y. Désières, L. Frey, and G. Grand, “Optical filter suitable for treating a ray with variable incidence and detector including such a filter,” U.S. patent 2011/290982A1 (1 December 2011).

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer for operation at visible wavelengths,” Proc. Int. Elec. Dev. Meeting 467–470 (1998).
[Crossref]

DxO color shading correction http://www.dxo.com/intl/embedded-imaging/image-signal-processor-isp/dxo-autocls

J. W. Seo and J. H. Lee, “A novel anti-vignetting method for color shading artifact suppression,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2013), 6486881.

X. Gagnard and N. Hotellier, “Through silicon via implementation in CMOS image sensor product,” in 3D Integration for VLSI Systems, C. S. Tan, K. N. Chen, S. J. Koester, ed. (Pan Stanford Publishing Pte. Ltd., 2011).

Y. Inaba, M. Kasano, S. Yoshida, and T. Yamaguchi, “Solid-state imaging device, manufacturing method of solid-state imaging device, and camera employing same,” U.S. patent 7759679B2 (20 July 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Principle of blue-shift compensation by nanostructured layer in FP filters. 1) At the center of the sensor, light is normally incident and the filter is centered at λ1. 2) At the sensor edge, the oblique incidence of light induces a blue-shift of the filter response: λ2 < λ1. 3) By changing the lateral dimensions of the nanostructures, the effective refractive index of the FP cavity is increased and the blue-shift is compensated: λ3 = λ1.
Fig. 2
Fig. 2 Left: Design (left) and simulated transmittance (right) of several simple FP filters on glass: with Ag reflectors (designs 1, 2), Bragg reflectors (designs 3, 4), low-index spacer (designs 1, 3), high-index spacer (designs 2, 4). For each filter, the normal incidence filter response (black dashed line) is blue-shifted at 25° incidence (grey dotted line). The blue-shift is compensated (red plain line) by modifying the effective index of one or two nanostructured layers (see Table 2 for the dimensions of the nanostructures). The effective index is shown in the designs, without blue-shift compensation (black), and with compensation (modifications in red).
Fig. 3
Fig. 3 (a) Design of Cu/SiN/SiO2 FP filter on Si substrate and back-end stack, the effective index for compensation of blue-shift at 25° is shown in red. (b) Measured reflectance in normal incidence (dark dashed line), at 25° incidence (grey dotted line), at 25° with blue-shift compensation (red line). (c) and (d) SEM cross sections of the filter. The nanostructured layer is realized by patterning a SiN layer and gap-filling with SiO2. SiN patches arrays with different lateral dimensions, for example 80nm in (c) and 120nm in (d) are realized in a single patterning step on the wafer.
Fig. 4
Fig. 4 Left: Designs (left) and simulated transmittances (right) of an IR band-pass and an IR-cut filter on glass. For each filter, the normal incidence filter response (black dashed line) is blue-shifted at 25° incidence (grey dotted line). The blue-shift is compensated (red plain line) by modifying the effective index of one single nanostructured layer (see Table 2 for the dimensions of the nanostructures). The effective index is shown in the designs, without blue-shift compensation (black), and with compensation (modifications in red).
Fig. 5
Fig. 5 Cross section sketch of multispectral FP filter array with extended range in VIS and NIR range. For single cavity designs (left), the spectral tuning is achieved by one single nanostructured layer with variable lateral dimensions of the patterns. The extension to the NIR is obtained by an additional homogeneous layer inside the FP cavity. Second-order resonances are eliminated by absorption in a specific layer on top of the stack. The double cavity designs (right) provide higher spectral selectivity and requires a symmetric arrangement in the vertical axis to enable planarization after each gap-filling step.
Fig. 6
Fig. 6 VIS designs (a, b), NIR designs (c, d), and simulated transmittances on glass (e, f) of multispectral Ag/TiO2/SiO2 FP filters with either single-cavity (a, c, e) or double-cavity (b, d, f) architectures. The designs rely on one single nanostructured layer per FP cavity with variable lateral dimensions of nanostructures for spectral tuning, an additional homogeneous spacer in the FP cavity to access the NIR domain, and an absorptive layer on top of NIR filters for the elimination of the shortwave sidebands.

Tables (3)

Tables Icon

Table 1 First order estimate of spacer index variation δn for compensation of blue-shift δλ in FP filters*

Tables Icon

Table 2 Characteristics of the nanostructured layer for blue shift compensation in interference filter designs (see Fig. 2)

Tables Icon

Table 3 Characteristics of the nanostructured layer in Ag / TiO2 (H) / SiO2 (B) multispectral FP filters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2π λ m ndcosθ φ a + φ b 2 =mπ
λ max n H ( λ max ) ~ λ min n B ( λ min )

Metrics