Abstract

Modulators using atomic systems are often limited in speed by the rate of spontaneous emission. One approach for overcoming this limit is to make use of a buffer gas such as Ethane, which causes rapid fine structure mixing of the P1/2 and P3/2 states, and broadens the absorption spectra of the D1 and D2 lines in alkali atoms. Employing this effect, we show that one can achieve high speed modulation using ladder transitions in Rubidium. We demonstrate a 100-fold increase, due to the addition of the buffer gas, in the modulation bandwidth using the 5S-5P-5D cascade system. The observed bandwidth of ~200 MHz is within a factor of 2.5 of the upper bound of ~0.51 GHz for the system used, and is limited by various practical constraints in our experiment. We also present numerical simulations for the system and predict that a much higher modulation speed should be achievable under suitable conditions. In combination with a tapered nano fiber or a SiN waveguide, it has the potential to be used for high-speed, low-power all-optical modulation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms

Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar
Opt. Express 20(13) 13798-13809 (2012)

Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging

Subramanian Krishnamurthy, Y. Tu, Y. Wang, S. Tseng, and M.S. Shahriar
Opt. Express 22(23) 28898-28913 (2014)

Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic

Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M.S. Shahriar
Opt. Express 21(21) 24514-24531 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [Crossref]
  2. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
    [Crossref]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
    [Crossref] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [Crossref] [PubMed]
  5. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
    [Crossref] [PubMed]
  6. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
    [Crossref] [PubMed]
  7. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic,” Opt. Express 21(21), 24514–24531 (2013).
    [Crossref] [PubMed]
  8. S. Krishnamurthy, Y. Tu, Y. Wang, S. Tseng, and M. S. Shahriar, “Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging,” Opt. Express 22(23), 28898–28913 (2014).
    [Crossref] [PubMed]
  9. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
    [Crossref] [PubMed]
  10. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
    [Crossref] [PubMed]
  11. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [Crossref] [PubMed]
  12. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
    [Crossref] [PubMed]
  13. B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F (2008).
    [Crossref]
  14. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  15. E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, Ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).
  16. S.-Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29(1), 20–73 (1957).
    [Crossref]
  17. M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56(6), 4569–4578 (1997).
    [Crossref]
  18. M. S. Shahriar, Y. Wang, Y. Subramanian Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
    [Crossref]
  19. D. A. Steck, “Alkali D line data,” http://steck.us/alkalidata/rubidium87numbers.pdf
  20. P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
    [Crossref]
  21. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [Crossref]
  22. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-Optical Switch Controls Strong Beams with Weak Ones,” OPN, p 24, (2005).
  23. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  24. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [Crossref] [PubMed]
  25. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
    [Crossref]
  26. J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995)
  27. W. F. Krupke, “Diode Pumped Alkali Lasers (DPALs) – an Overview,” Proc. SPIE 7005, 700521 (2008).
    [Crossref]
  28. Z. Konefał, “Observation of collision induced processes in rubidium–Ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
    [Crossref]
  29. F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102(5-6), 432–438 (1993).
    [Crossref]
  30. F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium: erratum,” Opt. Commun. 110(5-6), 731 (1994).
    [Crossref]
  31. H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. At. Mol. Opt. Phys. 44(5), 055004 (2011).
    [Crossref]
  32. R. Hamid, M. Cetintas, and M. Celik, “Polarization resonance on S–D two-photon transition of Rb atoms,” Opt. Commun. 224(4-6), 247–253 (2003).
    [Crossref]
  33. J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
    [Crossref]
  34. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
    [Crossref] [PubMed]

2014 (2)

S. Krishnamurthy, Y. Tu, Y. Wang, S. Tseng, and M. S. Shahriar, “Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging,” Opt. Express 22(23), 28898–28913 (2014).
[Crossref] [PubMed]

M. S. Shahriar, Y. Wang, Y. Subramanian Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (2)

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. At. Mol. Opt. Phys. 44(5), 055004 (2011).
[Crossref]

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

2010 (2)

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
[Crossref] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

2009 (2)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

2008 (4)

W. F. Krupke, “Diode Pumped Alkali Lasers (DPALs) – an Overview,” Proc. SPIE 7005, 700521 (2008).
[Crossref]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F (2008).
[Crossref]

2007 (1)

2006 (1)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

2005 (1)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (1)

R. Hamid, M. Cetintas, and M. Celik, “Polarization resonance on S–D two-photon transition of Rb atoms,” Opt. Commun. 224(4-6), 247–253 (2003).
[Crossref]

1999 (1)

Z. Konefał, “Observation of collision induced processes in rubidium–Ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
[Crossref]

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

1997 (1)

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56(6), 4569–4578 (1997).
[Crossref]

1994 (1)

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium: erratum,” Opt. Commun. 110(5-6), 731 (1994).
[Crossref]

1993 (1)

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102(5-6), 432–438 (1993).
[Crossref]

1976 (1)

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

1974 (1)

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, Ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

1957 (1)

S.-Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29(1), 20–73 (1957).
[Crossref]

Andrews, L. R.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Beach, R. J.

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Bhagwat, A. R.

Biraben, F.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium: erratum,” Opt. Commun. 110(5-6), 731 (1994).
[Crossref]

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102(5-6), 432–438 (1993).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

Brambilla, G.

Busch, H. C.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Cates, G. D.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56(6), 4569–4578 (1997).
[Crossref]

Celik, M.

R. Hamid, M. Cetintas, and M. Celik, “Polarization resonance on S–D two-photon transition of Rb atoms,” Opt. Commun. 224(4-6), 247–253 (2003).
[Crossref]

Cetintas, M.

R. Hamid, M. Cetintas, and M. Celik, “Polarization resonance on S–D two-photon transition of Rb atoms,” Opt. Commun. 224(4-6), 247–253 (2003).
[Crossref]

Chen, S.-Y.

S.-Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29(1), 20–73 (1957).
[Crossref]

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Desiatov, B.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref] [PubMed]

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Dubinskii, M. A.

Ehrenreich, T.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Felder, R.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium: erratum,” Opt. Commun. 110(5-6), 731 (1994).
[Crossref]

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102(5-6), 432–438 (1993).
[Crossref]

Finazzi, V.

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

Gaeta, A. L.

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Goykhman, I.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref] [PubMed]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Hamid, R.

R. Hamid, M. Cetintas, and M. Celik, “Polarization resonance on S–D two-photon transition of Rb atoms,” Opt. Commun. 224(4-6), 247–253 (2003).
[Crossref]

Harris, S. E.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Kanz, V. K.

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F (2008).
[Crossref]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Konefal, Z.

Z. Konefał, “Observation of collision induced processes in rubidium–Ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
[Crossref]

Krause, L.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, Ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Krishnamurthy, S.

Krupke, W. F.

Kulatunga, P.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Kumar, P.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

Levy, U.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref] [PubMed]

Liao, P. F.

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

Lipson, M.

Londero, P.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Merkle, L. D.

Millerioux, Y.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium: erratum,” Opt. Commun. 110(5-6), 731 (1994).
[Crossref]

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102(5-6), 432–438 (1993).
[Crossref]

Miron, E.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56(6), 4569–4578 (1997).
[Crossref]

Moon, H. S.

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. At. Mol. Opt. Phys. 44(5), 055004 (2011).
[Crossref]

Munro, W. J.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Nez, F.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium: erratum,” Opt. Commun. 110(5-6), 731 (1994).
[Crossref]

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102(5-6), 432–438 (1993).
[Crossref]

Noh, H. R.

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. At. Mol. Opt. Phys. 44(5), 055004 (2011).
[Crossref]

Pati, G. S.

M. S. Shahriar, Y. Wang, Y. Subramanian Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Payne, S. A.

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Phaneuf, R. A.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, Ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

Richardson, D.

Rodrigues, D. A.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Romalis, M. V.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56(6), 4569–4578 (1997).
[Crossref]

Salit, K.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Salit, M.

Shahriar, M. S.

S. Krishnamurthy, Y. Tu, Y. Wang, S. Tseng, and M. S. Shahriar, “Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging,” Opt. Express 22(23), 28898–28913 (2014).
[Crossref] [PubMed]

M. S. Shahriar, Y. Wang, Y. Subramanian Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic,” Opt. Express 21(21), 24514–24531 (2013).
[Crossref] [PubMed]

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
[Crossref] [PubMed]

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Slepkov, A. D.

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

Spiller, T. P.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

Stern, L.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref] [PubMed]

Subramanian Krishnamurthy, Y.

M. S. Shahriar, Y. Wang, Y. Subramanian Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

Sukenik, C. I.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

Takeo, M.

S.-Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29(1), 20–73 (1957).
[Crossref]

Tseng, S.

Tu, Y.

Venkataraman, V.

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Walentynowicz, E.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, Ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Wang, Y.

Xu, Q.

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F (2008).
[Crossref]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Can. J. Phys. (1)

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, Ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

J. Mod. Opt. (2)

M. S. Shahriar, Y. Wang, Y. Subramanian Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an n-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).
[Crossref]

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. At. Mol. Opt. Phys. 44(5), 055004 (2011).
[Crossref]

Nat. Commun. (1)

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale light-matter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Opt. Commun. (6)

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285(12), 2851–2853 (2012).
[Crossref]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

R. Hamid, M. Cetintas, and M. Celik, “Polarization resonance on S–D two-photon transition of Rb atoms,” Opt. Commun. 224(4-6), 247–253 (2003).
[Crossref]

Z. Konefał, “Observation of collision induced processes in rubidium–Ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
[Crossref]

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102(5-6), 432–438 (1993).
[Crossref]

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium: erratum,” Opt. Commun. 110(5-6), 731 (1994).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (2)

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56(6), 4569–4578 (1997).
[Crossref]

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

Phys. Rev. Lett. (5)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[Crossref] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[Crossref] [PubMed]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Proc. SPIE (2)

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F (2008).
[Crossref]

W. F. Krupke, “Diode Pumped Alkali Lasers (DPALs) – an Overview,” Proc. SPIE 7005, 700521 (2008).
[Crossref]

Rev. Mod. Phys. (1)

S.-Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29(1), 20–73 (1957).
[Crossref]

Science (1)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[Crossref] [PubMed]

Other (3)

D. A. Steck, “Alkali D line data,” http://steck.us/alkalidata/rubidium87numbers.pdf

J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-Optical Switch Controls Strong Beams with Weak Ones,” OPN, p 24, (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the population and coherence dynamics in an alkali atom in the presence of a high-pressure buffer gas.
Fig. 2
Fig. 2 Model used for numerical simulation (a) Optical fields and decay rates-radiative and collisional. (b) Transverse decay (dephasing) terms.
Fig. 3
Fig. 3 Simulation results for high speed modulator at 1 GHz. Red trace: pump; Blue trace: Probe. While we have indicate the vertical axis as having arbitrary units, it should be noted that the Rabi frequencies, which correspond to the square root of the intensities, are specified (pump Rabi frequency is 800γa, and probe Rabi frequency is 0.1γa). Since this is an absorptive modulation, the degree of absorption can be increased by raising the optical density. The modulation depth, which is about 90% as shown, can be made to be essentially 100% with higher optical density.
Fig. 4
Fig. 4 Experimental set-up for high speed modulator
Fig. 5
Fig. 5 Probe (776 nm) absorption lineshape in the presence of buffer Ethane. Here, Ethane pressure is ~6 psi and the pump and probe powers are ~800 mW and ~0.5 mW.
Fig. 6
Fig. 6 5S-5P-5D modulation data without buffer gas. (a) 2 KHz (b) 10 KHz (c) Modulation amplitude vs modulation speed. We have indicated the vertical axes in (a) and (b) as having arbitrary units, since the relevant parameter is the modulation depth, which is about 95% in both cases. In (a), the peak pump signal corresponds to an un-attenuated pump power of ~760 mW, and the peak probe transmission corresponds to an un-attenuated probe power of 0.5 mW. Similarly, in (b), the peak probe transmission corresponds to an un-attenuated probe power of 0.5 mW. Since this is an absorptive modulation, the degree of absorption can in principle be increased by increasing the optical density.
Fig. 7
Fig. 7 Modulation data in the presence of buffer gas (Ethane) at pressure of ~6 psi. (a) 1 MHz (b) 5 MHz (c) Modulation amplitude vs modulation speed. We have indicated the vertical axes in (a) and (b) as having arbitrary units, since the relevant parameter is the modulation depth, which is about 90% in both cases. The peak probe transmission at both 1 MHz and 5 MHz corresponds to an un-attenuated probe power of 0.5 mW.
Fig. 8
Fig. 8 Increase in modulation amplitude for two different modulation frequencies (1 MHz and 10 MHZ) with increase in pump power. Just as in Fig. 6 and 7, the vertical axis is shown in arbitrary units, since the relevant parameter is the modulation depth, which can be increased to be near 100% by increasing the optical depth, since it is an absorptive modulator. The data shown in Fig. 7 correspond to the maximum power employed for the pump beams (760 mW), thus corresponding to the right-most data points in this figure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ρ ˜ = t ρ ˜ ham + t ρ ˜ source + t ρ ˜ transdecay
t ρ ˜ ham = i [ H' ρ ˜ ρ ˜ H '* ]
H'=( 0 Ωa/2 0 0 Ωa/2 iγ2/2 Ωb/2 0 0 Ωb/2 iγ3/2 0 0 0 0 iγ4/2 )
t ρ ˜ source =( γ a ( ρ ˜ 22 + ρ ˜ 44 ) 0 0 0 0 ( γ b ρ ˜ 33 /2+ γ up ρ ˜ 44 ) 0 0 0 0 0 0 0 0 0 ( γ b ρ ˜ 33 /2+ γ down ρ ˜ 22 ) )
t ρ ˜ transdecay =( 0 γ d ρ ˜ 12 ξ γ d ρ ˜ 13 γ d ρ ˜ 14 γ d ρ ˜ 21 0 β γ d ρ ˜ 23 α γ d ρ ˜ 24 ξ γ d ρ ˜ 31 β γ d ρ ˜ 32 0 β γ d ρ ˜ 34 γ d ρ ˜ 41 α γ d ρ ˜ 42 β γ d ρ ˜ 43 0 )

Metrics