Abstract

A theoretical investigation of the equalization-enhanced phase noise (EEPN) and its mitigation is presented. We show with a frequency domain analysis that the EEPN results from the non-linear inter-mixing between the sidebands of the dispersed signal and the noise sidebands of the local oscillator. It is further shown and validated with system simulations that the transmission penalty is mainly due to the slow optical frequency fluctuations of the local oscillator. Hence, elimination of the frequency noise below a certain cut-off frequency significantly reduces the transmission penalty, even when frequency noise would otherwise cause an error floor. The required cut-off frequency increases linearly with the white frequency noise level and hence the linewidth of the local oscillator laser, but is virtually independent of the symbol rate and the accumulated dispersion.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of carrier phase recovery for electronically dispersion compensated coherent systems

Ramtin Farhoudi, Amirhossein Ghazisaeidi, and Leslie Ann Rusch
Opt. Express 20(24) 26568-26582 (2012)

Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization

Tianhua Xu, Gunnar Jacobsen, Sergei Popov, Jie Li, Ari T. Friberg, and Yimo Zhang
Opt. Express 19(8) 7756-7768 (2011)

Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation

Irshaad Fatadin and Seb J. Savory
Opt. Express 18(15) 16273-16278 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  2. R. Saunders, M. Traverso, T. Schmidt, and C. Malouin, “Economics of 100 Gb/s transport,” in Proc. of OFC (San Diego, California, 2010), paper. NMB.2.
  3. I. Garrett and G. Jacobsen, “Phase noise in weakly coherent systems,” IEE Proceedings J. Optoelectronics, 136(3), 159–165 (1989).
    [Crossref]
  4. N. G. Gonzalez, A. C. Jambrina, R. Borkowski, V. Arlunno, T. T. Pham, R. Rodes, X. Zhang, M. B. Othman, K. Prince, X. Yu, J. B. Jensen, D. Zibar, and I. T. Monroy, “Reconfigurable digital coherent receiver for metro-access network supporting mixed modulation formats and bit-rates,” in Proc. of OFC (Los Angeles, California, 2011), Paper. OMW.7.
  5. W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
    [Crossref] [PubMed]
  6. M. Iglesias Olmedo, X. Pang, M. Piels, R. Schatz, G. Jacobsen, S. Popov, I. Tafur Monroy, and D. Zibar, “Carrier Recovery Techniques for Semiconductor Laser Frequency Noise for 28 Gbd DP-16QAM,” Proc. of OFC (Los Angeles, California, 2015), paper Th2A.10.
    [Crossref]
  7. A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
    [Crossref] [PubMed]
  8. T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
    [PubMed]
  9. G. Jacobsen, M. S. Lidón, T. Xu, S. Popov, A. T. Friberg, and Y. Zhang, “Influence of pre- and post compensation of chromatic dispersion on equalization enhanced phase noise in coherent multilevel systems,” J. Opt. Commun. 32, 257–261 (2012).
  10. G. Jacobsen, T. Xu, S. Popov, and S. Sergeyev, “Study of EEPN mitigation using modified RF pilot and Viterbi-Viterbi based phase noise compensation,” Opt. Express 21(10), 12351–12362 (2013).
    [Crossref] [PubMed]
  11. G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “EEPN and CD study for coherent optical nPSK and nQAM systems with RF pilot based phase noise compensation,” Opt. Express 20(8), 8862–8870 (2012).
    [Crossref] [PubMed]
  12. R. Farhoudi, A. Ghazisaeidi, and L. A. Rusch, “Performance of carrier phase recovery for electronically dispersion compensated coherent systems,” Opt. Express 20(24), 26568–26582 (2012).
    [Crossref] [PubMed]
  13. Q. Zhuge, X. Xu, Z. A. El-Sahn, M. E. Mousa-Pasandi, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “Experimental investigation of the equalization-enhanced phase noise in long haul 56 Gbaud DP-QPSK systems,” Opt. Express 20(13), 13841–13846 (2012).
    [Crossref] [PubMed]
  14. S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. Rasmussen, “ Interplay between local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proc. of ECOC (Torino, Italy, 2010), Paper. Mo.1.C.2.
    [Crossref]
  15. C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proc.of OFC (San Diego, California, 2009), Paper. OMT.4.
  16. I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
    [Crossref] [PubMed]
  17. M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
    [Crossref]
  18. G. Colavolpe, T. Foggi, E. Forestieri, and M. Secondini, “Impact of phase noise and compensation techniques in coherent optical systems,” J. Lightwave Technol. 29(18), 2790–2800 (2011).
    [Crossref]
  19. www.vpiphotonics.com .
  20. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent Optical Single Carrier Transmission Using Overlap Frequency Domain Equalization for Long-Haul Optical Systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
    [Crossref]

2013 (1)

2012 (4)

2011 (2)

2010 (2)

2009 (1)

2008 (2)

1985 (1)

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

Barros, D. J. F.

Chagnon, M.

Colavolpe, G.

El-Sahn, Z. A.

Farhoudi, R.

Fatadin, I.

Foggi, T.

Forestieri, E.

Friberg, A. T.

Ghazisaeidi, A.

Ho, K. P.

Ip, E.

Ishihara, K.

Jacobsen, G.

Kahn, J. M.

Kobayashi, T.

Kotajima, S.

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

Kudo, R.

Lau, A. P. T.

Li, J.

Lidón, M. S.

G. Jacobsen, M. S. Lidón, T. Xu, S. Popov, A. T. Friberg, and Y. Zhang, “Influence of pre- and post compensation of chromatic dispersion on equalization enhanced phase noise in coherent multilevel systems,” J. Opt. Commun. 32, 257–261 (2012).

Miyamoto, Y.

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Ohtsu, M.

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

Plant, D. V.

Popov, S.

Qiu, M.

Rusch, L. A.

Sano, A.

Savory, S. J.

Secondini, M.

Sergeyev, S.

Shen, T. S. R.

Shieh, W.

Takatori, Y.

Xu, T.

Xu, X.

Zhang, Y.

Zhuge, Q.

IEEE J. Quantum Electron. (1)

M. Ohtsu and S. Kotajima, “Linewidth reduction of a semiconductor laser by electrical feedback,” IEEE J. Quantum Electron. 21(12), 1905–1912 (1985).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. (1)

G. Jacobsen, M. S. Lidón, T. Xu, S. Popov, A. T. Friberg, and Y. Zhang, “Influence of pre- and post compensation of chromatic dispersion on equalization enhanced phase noise in coherent multilevel systems,” J. Opt. Commun. 32, 257–261 (2012).

Opt. Express (9)

G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “EEPN and CD study for coherent optical nPSK and nQAM systems with RF pilot based phase noise compensation,” Opt. Express 20(8), 8862–8870 (2012).
[Crossref] [PubMed]

Q. Zhuge, X. Xu, Z. A. El-Sahn, M. E. Mousa-Pasandi, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “Experimental investigation of the equalization-enhanced phase noise in long haul 56 Gbaud DP-QPSK systems,” Opt. Express 20(13), 13841–13846 (2012).
[Crossref] [PubMed]

R. Farhoudi, A. Ghazisaeidi, and L. A. Rusch, “Performance of carrier phase recovery for electronically dispersion compensated coherent systems,” Opt. Express 20(24), 26568–26582 (2012).
[Crossref] [PubMed]

G. Jacobsen, T. Xu, S. Popov, and S. Sergeyev, “Study of EEPN mitigation using modified RF pilot and Viterbi-Viterbi based phase noise compensation,” Opt. Express 21(10), 12351–12362 (2013).
[Crossref] [PubMed]

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
[Crossref] [PubMed]

A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
[Crossref] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
[PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[Crossref] [PubMed]

W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
[Crossref] [PubMed]

Other (7)

S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. Rasmussen, “ Interplay between local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proc. of ECOC (Torino, Italy, 2010), Paper. Mo.1.C.2.
[Crossref]

C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proc.of OFC (San Diego, California, 2009), Paper. OMT.4.

www.vpiphotonics.com .

R. Saunders, M. Traverso, T. Schmidt, and C. Malouin, “Economics of 100 Gb/s transport,” in Proc. of OFC (San Diego, California, 2010), paper. NMB.2.

I. Garrett and G. Jacobsen, “Phase noise in weakly coherent systems,” IEE Proceedings J. Optoelectronics, 136(3), 159–165 (1989).
[Crossref]

N. G. Gonzalez, A. C. Jambrina, R. Borkowski, V. Arlunno, T. T. Pham, R. Rodes, X. Zhang, M. B. Othman, K. Prince, X. Yu, J. B. Jensen, D. Zibar, and I. T. Monroy, “Reconfigurable digital coherent receiver for metro-access network supporting mixed modulation formats and bit-rates,” in Proc. of OFC (Los Angeles, California, 2011), Paper. OMW.7.

M. Iglesias Olmedo, X. Pang, M. Piels, R. Schatz, G. Jacobsen, S. Popov, I. Tafur Monroy, and D. Zibar, “Carrier Recovery Techniques for Semiconductor Laser Frequency Noise for 28 Gbd DP-16QAM,” Proc. of OFC (Los Angeles, California, 2015), paper Th2A.10.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Baseband-equivalent frequency domain model of a coherent optical system. The sources are represented with their stochastic Fourier transforms and the components with their transfer functions.
Fig. 2
Fig. 2 Simulation setup. OBPF: Optical Band-Pass Filter, OSNR: noise loading, AWGN: Additive White Gaussian Noise generator, HPF: High-Pass Filter, FM: Frequency Modulator, ADC: Analog to Digital Converter, DD-PLL: Decision-Directed Phase-Locked-Loop.
Fig. 3
Fig. 3 BER vs. Cut-off frequency for 160 000 ps/nm accumulated dispersion and different LO linewidths. (a) QPSK, (b) 16-QAM.
Fig. 4
Fig. 4 Cut-off frequency for 1 dB OSNR penalty at BER = 10−3 vs LO linewidth for QPSK and 16-QAM.
Fig. 5
Fig. 5 BER vs. OSNR curves with and without filtering of low frequency noise of 5 MHz linewidth LO compared to ideal LO with accumulated dispersion shown in the inset. (a,b) QPSK, (c,d) 16-QAM.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R'( f )=[ R(f) e jk f 2 X( f ) ] e jk f 2
R'( f )= e jk f 2 [ R( f f 1 ) e jk( f 1 2 +2f f 1 ) X ( f 1 )d f 1 ] e jk f 2
R'( f )=R( f )X( 0 )+ , f 1 0 R( f f 1 ) e jk( f 1 2 +2f f 1 ) X ( f 1 )d f 1
X( f )= e ^ sp ( f ) j( 2πf )+ Δγ 2
R ' ( f ) f cutoff f cutoff R( f f 1 ) e jk( f 1 2 +2f f 1 ) ( e ^ sp ( f 1 ) j( 2π f 1 )+ Δγ 2 ) d f 1

Metrics