Abstract

We report the first pulsed laser operation of an Indium-modified Yb:KY(WO4)2 crystal. Indium incorporation enlarges the broadening of the Yb3+ optical bands, reduces crystal lattice parameters and increases np refractive index. A KY0.8In0.07Yb0.13(WO4)2 crystal pumped at 981 nm with a Ti-sapphire laser in a SESAM modulated resonator produces at 300 K self-starting and stable mode-locking. The shortest laser pulses achieved were centred at λ = 1041.1 nm, have a duration of 96 fs with average power of 134 mW and repetition rate of 103.5 MHz (1.3 nJ/pulse).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode-locked lasers

Simon Rivier, Valentin Petrov, Andreas Gross, Sophie Vernay, Volker Wesemann, Daniel Rytz, and Uwe Griebner
Opt. Express 15(24) 16279-16284 (2007)

Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber
Opt. Lett. 22(17) 1317-1319 (1997)

Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo
Opt. Express 12(22) 5362-5367 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Dubinskii, V. Fromzel, N. Ter-Gabrielyan, M. D. Serrano, D. E. Lahera, C. Cascales, and C. Zaldo, “Spectroscopic characterization and laser performance of resonantly diode-pumped Er3+-doped disordered NaY(WO4)2.,” Opt. Lett. 36(16), 3263–3265 (2011).
    [Crossref] [PubMed]
  2. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
    [Crossref]
  3. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
    [Crossref]
  4. P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono- and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
    [Crossref]
  5. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
    [Crossref]
  6. E. Castellano-Hernández, X. Han, C. Cascales, and C. Zaldo, “Indium-modified Yb:KY(WO4)2 crystals. Growth, spectroscopy and laser operation,” in Advanced Solid-State Lasers (Optical Society of America, 2013) paper AWA.2.
  7. A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
    [Crossref]
  8. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009).
    [Crossref] [PubMed]
  9. A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, “Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals,” Appl. Phys. B 83(1), 61–65 (2006).
    [Crossref]
  10. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
    [Crossref] [PubMed]
  11. A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
    [Crossref] [PubMed]
  12. S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
    [Crossref]
  13. A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
    [Crossref]
  14. S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).
  15. A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
    [Crossref]
  16. P. Klopp, V. Petrov, U. Griebner, and G. Erbert, “Passively mode-locked Yb:KYWlaser pumped by a tapered diode laser,” Opt. Express 10(2), 108–113 (2002).
    [Crossref] [PubMed]

2011 (1)

2009 (2)

P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009).
[Crossref] [PubMed]

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

2008 (1)

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

2007 (4)

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
[Crossref]

2006 (1)

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, “Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals,” Appl. Phys. B 83(1), 61–65 (2006).
[Crossref]

2004 (1)

2002 (1)

2001 (2)

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
[Crossref] [PubMed]

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

2000 (1)

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

1977 (1)

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono- and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

Aguiló, M.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Borca, C. N.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Brown, C. T. A.

Bugajski, M.

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

Butashin, A. V.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Cascales, C.

Danailov, M. B.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

Demidovich, A. A.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

Denisov, I. A.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, “Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals,” Appl. Phys. B 83(1), 61–65 (2006).
[Crossref]

Díaz, F.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Dubinskii, M.

Erbert, G.

Fromzel, V.

Gardillou, F.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Griebner, U.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

P. Klopp, V. Petrov, U. Griebner, and G. Erbert, “Passively mode-locked Yb:KYWlaser pumped by a tapered diode laser,” Opt. Express 10(2), 108–113 (2002).
[Crossref] [PubMed]

Gross, A.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

Jasik, A.

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
[Crossref]

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Klevtsov, P. V.

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono- and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

Klevtsova, R. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono- and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

Klopp, P.

Konstantinova, A. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kosmala, M.

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

Kuleshov, N. V.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, “Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals,” Appl. Phys. B 83(1), 61–65 (2006).
[Crossref]

Kuzmin, A. N.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

Lagatsky, A. A.

Lahera, D. E.

Liu, H.

Liu, J.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Mateos, X.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Mourou, G.

Muszalski, J.

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

Nees, J.

Orekhova, V. P.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Pavlyuk, A. A.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Petrov, V.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

P. Klopp, V. Petrov, U. Griebner, and G. Erbert, “Passively mode-locked Yb:KYWlaser pumped by a tapered diode laser,” Opt. Express 10(2), 108–113 (2002).
[Crossref] [PubMed]

Píerscinki, K.

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

Pollnau, M.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Pujol, M. C.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Radzewicz, C.

Rivier, S.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Romanyuk, Y. E.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Ryabtsev, G. I.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

Rytz, D.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

Selivanov, A. G.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, “Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals,” Appl. Phys. B 83(1), 61–65 (2006).
[Crossref]

Serrano, M. D.

Sibbett, W.

Silvestre, O.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Strek, W.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

Talalaev, V. G.

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

Ter-Gabrielyan, N.

Titov, A. N.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

Vernay, S.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

Wasylczyk, P.

Wesermann, V.

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Segmented grown Yb:KY(WO4)2/KY(WO4)2 for use in continuous-wave and mode locked lasers,” Opt. Express 15(24), 16279–16284 (2007).

Wnuk, P.

Yumashev, K. V.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, “Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals,” Appl. Phys. B 83(1), 61–65 (2006).
[Crossref]

Zaldo, C.

Appl. Phys. B (1)

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, “Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals,” Appl. Phys. B 83(1), 61–65 (2006).
[Crossref]

Appl. Phys. Express (1)

S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesermann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express 1(12), 112601 (2008).
[Crossref]

Crystallogr. Rep. (1)

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ3-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

J. Alloy. Comp. (1)

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb:KYW laser properties,” J. Alloy. Comp. 300–301, 238–241 (2000).
[Crossref]

J. Appl. Phys. (1)

A. Jasik, J. Muszalski, K. Píerścińki, M. Bugajski, V. G. Talalaev, and M. Kosmala, “Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation,” J. Appl. Phys. 106(5), 053101 (2009).
[Crossref]

J. Struct. Chem. (1)

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono- and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

Laser Photon. Rev. (2)

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (1)

E. Castellano-Hernández, X. Han, C. Cascales, and C. Zaldo, “Indium-modified Yb:KY(WO4)2 crystals. Growth, spectroscopy and laser operation,” in Advanced Solid-State Lasers (Optical Society of America, 2013) paper AWA.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) KY0.898In0.10Yb0.002(WO4)2 crystal: 300 K np refractive index dispersion (open circles), its fit to the Sellmeir law (red continuous line) and group velocity dispersion, GVD (dashed line). To compare, the black continuous line shows np for KY(WO4)2, Ref. 7. (b) Comparison of the 2F7/2(0)→2F5/2(0´) 6 K excitation PL spectra of Yb3+ in KY0.995Yb0.005(WO4)2 and KY0.898In0.10 Yb0.002(WO4)2 crystals. λEMI = 1031 nm.
Fig. 2
Fig. 2 (a) Astigmatically compensated optical resonator used for mode-locked laser operation. (b) Overview of laser efficiencies (open squares) and pulse duration (τ, full circles) obtained with two sample thickness and two output couplers.
Fig. 3
Fig. 3 Characteristics of the mode-locked laser pulses obtained with KY0.8In0.07Yb0.13(WO4)2 crystal. (a) Autocorrelation trace (open circles) and its fit to a sech2 function (line). The inset shows a mode-locked pulse train. (b) Spectral distribution of the mode-locked pulses. The inset shows the cross section of the beam intensity.

Tables (1)

Tables Icon

Table 1 Summary of mode-locking laser results obtained with Yb-doped KY(WO4)2 crystals. λPUMP = Pump wavelength. λEMI = Laser emission wavelength. pol = Polarization. τ = Pulse duration. <E> = Average output power. f = Repetition frequency. τ × Δν = Time bandwidth product. KL = Kerr lens. SESAM = Semiconductor saturable mirror. Ti-sa = Ti-sapphire laser. DL = diode laser. Np, Nm and Ng refer to the directions of the indicatrix.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 =A+ B λ 2 λ 2 C 2 D λ 2 .
GVD= λ 3 2π c 2 ( d 2 n d λ 2 ).

Metrics