Abstract

We present a full three-dimensional (3D) power flow analysis of an emitter-nanoantenna system. A conventional analysis, based on the total Poynting vector, calculates only the coupling strength in terms of the Purcell enhancement. For a better understanding of the emitter-nanoantenna system, not only the Purcell enhancement but also complete information on the energy transfer channels is necessary. The separation of the pure scattering and emitter output Poynting vectors enables the quantification of the individual energy transfer channels. Employing the finite-difference time-domain method (FDTD), we examine a nanodisk antenna that supports the bright dipole and dark quadrupole resonance modes for which the power flow characteristics are completely distinct, and we analyze the power flow enhancements to the energy transfer channels with respect to the wavelength, polarization, and position of the emitter coupled to the antenna. The 3D power flow analysis reveals how the constructive or destructive interference between the emitter and the antenna resonance mode affects the power flow enhancements and the far-field radiation pattern. Our proposed power flow analysis should play a critical role in characterizing the emitter-antenna system and customizing its energy transfer properties for desired applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Power flow from a dipole emitter near an optical antenna

Kevin C. Y. Huang, Young Chul Jun, Min-Kyo Seo, and Mark L. Brongersma
Opt. Express 19(20) 19084-19092 (2011)

Optical scattering resonances of single and coupled dimer plasmonic nanoantennas

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas
Opt. Express 15(26) 17736-17746 (2007)

Polarization and mutual coupling effects in aluminum nanoantenna arrays

N. Dorh, J. Stokes, and M. J. Cryan
J. Opt. Soc. Am. B 32(4) 721-729 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  2. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  3. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  4. T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
    [Crossref] [PubMed]
  5. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
    [Crossref] [PubMed]
  6. M. K. Schmidt, S. Mackowski, and J. Aizpurua, “Control of single emitter radiation by polarization- and position-dependent activation of dark antenna modes,” Opt. Lett. 37(6), 1017–1019 (2012).
    [Crossref] [PubMed]
  7. C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
    [Crossref] [PubMed]
  8. D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
    [Crossref]
  9. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
    [Crossref] [PubMed]
  10. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
    [Crossref] [PubMed]
  11. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
    [Crossref] [PubMed]
  12. D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
    [Crossref] [PubMed]
  13. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
    [Crossref] [PubMed]
  14. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
    [Crossref] [PubMed]
  15. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  16. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
    [Crossref] [PubMed]
  17. E.-K. Lee, J.-H. Song, K.-Y. Jeong, and M.-K. Seo, “Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy,” Opt. Express 21(20), 23036–23047 (2013).
    [Crossref] [PubMed]
  18. J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
    [Crossref]
  19. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323 (1983).
    [Crossref]
  20. H. T. Miyazaki and Y. Kurokawa, “How Can a Resonant Nanogap Enhance Optical Fields by Many Orders of Magnitude?” IEEE J. Sel. Top. Quantum Electron. 14(6), 1565–1576 (2008).
    [Crossref]
  21. K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19(20), 19084–19092 (2011).
    [PubMed]
  22. J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
    [Crossref] [PubMed]
  23. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  24. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  25. H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
    [Crossref] [PubMed]
  26. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatterers buried in stratified grounds,” IEEE Trans. Antenn. Propag. 44(8), 1150–1157 (1996).
    [Crossref]
  29. T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
    [Crossref] [PubMed]

2014 (3)

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

2013 (5)

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

E.-K. Lee, J.-H. Song, K.-Y. Jeong, and M.-K. Seo, “Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy,” Opt. Express 21(20), 23036–23047 (2013).
[Crossref] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

2012 (5)

M. K. Schmidt, S. Mackowski, and J. Aizpurua, “Control of single emitter radiation by polarization- and position-dependent activation of dark antenna modes,” Opt. Lett. 37(6), 1017–1019 (2012).
[Crossref] [PubMed]

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

2011 (3)

K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19(20), 19084–19092 (2011).
[PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
[Crossref]

2010 (3)

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

2009 (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

2008 (2)

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “How Can a Resonant Nanogap Enhance Optical Fields by Many Orders of Magnitude?” IEEE J. Sel. Top. Quantum Electron. 14(6), 1565–1576 (2008).
[Crossref]

2007 (3)

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref] [PubMed]

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

1996 (1)

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatterers buried in stratified grounds,” IEEE Trans. Antenn. Propag. 44(8), 1150–1157 (1996).
[Crossref]

1983 (1)

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323 (1983).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agio, M.

Aizpurua, J.

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Barthes, J.

J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
[Crossref]

Becker, S. F.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Bernal Arango, F.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Beyer, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323 (1983).
[Crossref]

Bösker, G.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Bouhelier, A.

J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
[Crossref]

Brongersma, M. L.

Chang, D.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

Choi, W.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coenen, T.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Colas des Francs, G.

J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
[Crossref]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Demarest, K.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatterers buried in stratified grounds,” IEEE Trans. Antenn. Propag. 44(8), 1150–1157 (1996).
[Crossref]

Dereux, A.

J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
[Crossref]

Di Martino, G.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Esmann, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Femius Koenderink, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Gölzhäuser, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Gray, S. K.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Gruber, C.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Guyot-Sionnest, P.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hemmer, P.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hohenau, A.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Hohenester, U.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Hou, D.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Huang, K. C. Y.

Huang, Z.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatterers buried in stratified grounds,” IEEE Trans. Antenn. Propag. 44(8), 1150–1157 (1996).
[Crossref]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Huntington, M. D.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

Huynh, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Jeong, K.-Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

Kaminski, F.

Kang, T.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

Kautschor, L.-O.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Kim, B.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

Kim, C. H.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

Kim, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Koenderink, A. F.

Kollmann, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Krenn, J. R.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “How Can a Resonant Nanogap Enhance Optical Fields by Many Orders of Magnitude?” IEEE J. Sel. Top. Quantum Electron. 14(6), 1565–1576 (2008).
[Crossref]

Lagae, L.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Lalanne, P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Lee, E.-K.

Lee, H.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

Lee, J.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Lee, T.-W.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Lienau, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Liu, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Lukin, M.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

Mackowski, S.

Maier, S. A.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

McEnery, K. R.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “How Can a Resonant Nanogap Enhance Optical Fields by Many Orders of Magnitude?” IEEE J. Sel. Top. Quantum Electron. 14(6), 1565–1576 (2008).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Moshchalkov, V. V.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Odom, T. W.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Özdemir, S. K.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Park, N.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Park, Q.-H.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

Pelton, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Piao, X.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Plumb, R.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatterers buried in stratified grounds,” IEEE Trans. Antenn. Propag. 44(8), 1150–1157 (1996).
[Crossref]

Polman, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Rogobete, L.

Sandoghdar, V.

Sauvan, C.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Schmidt, M. K.

Seo, M.-K.

Silies, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Song, J.-H.

Sonnefraud, Y.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Sørensen, A.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

Suh, J. Y.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

Tame, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Trügler, A.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Van Dorpe, P.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Vercruysse, D.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Verellen, N.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Vieker, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Wasielewski, M. R.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

Weeber, J. C.

J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
[Crossref]

Yoon, I.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zheng, X.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Zhou, W.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

ACS Nano (1)

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. E. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Am. J. Phys. (1)

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. T. Miyazaki and Y. Kurokawa, “How Can a Resonant Nanogap Enhance Optical Fields by Many Orders of Magnitude?” IEEE J. Sel. Top. Quantum Electron. 14(6), 1565–1576 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatterers buried in stratified grounds,” IEEE Trans. Antenn. Propag. 44(8), 1150–1157 (1996).
[Crossref]

Nano Lett. (6)

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna,” Nano Lett. 12(5), 2331–2336 (2012).
[Crossref] [PubMed]

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

J. Barthes, G. Colas des Francs, A. Bouhelier, J. C. Weeber, and A. Dereux, “Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide,” Phys. Rev. B 84(7), 073403 (2011).
[Crossref]

Phys. Rev. Lett. (3)

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the power flow from an emitter into the free space or the nanoantenna. The closed surfaces A, E, and T are employed to integrate the Poynting vectors and calculate the power flows to the energy transfer channels. (b) Schematic of the 3D gold nanodisk antenna, with diameter and thickness of 120 nm and 40 nm, respectively, coupled to the single-electric-dipole emitter. The nanodisk antenna supports the dipole and quadrupole resonance modes at about 650 and 550 nm, respectively. The inset shows the surface charge density distributions of the two resonance modes at the top surface of the nanoantenna excited by the y-polarized dipole emitter.
Fig. 2
Fig. 2 (a) Spectra of the power flow enhancement factors of the y-polarized dipole emitter placed 20 nm from the nanoantenna along the y-axis. The dotted black line indicates enhancement of 1. (b) Normalized time-averaged intensity distributions of the total electric field. (c) Phase distributions of the y component of the scattered electric field with respect to that of the emitter. The distribution measurements are taken at the x-y plane, including the top surface of the nanoantenna. The cosine of the phase is plotted and its positive and negative values respectively correspond to the in-phase and out-of-phase oscillations between he antenna’s scattered field and the emitter.
Fig. 3
Fig. 3 (a) Spectra of the power flow enhancement factors for the x-polarized dipole emitter placed 20 nm from the nanoantenna along the y-axis. The dotted black line indicates enhancement of 1. (b) Normalized time-averaged intensity distribution of the total electric field. (c) Phase distribution of the x component of the scattered electric field with respect to that of the emitter.
Fig. 4
Fig. 4 The magnitude distributions and streamlines of the time-averaged Poynting vectors S tot , S out and S scat at the resonance conditions of the quadrupole (λ = 550 nm) and dipole (λ = 650 nm) modes for (a) the y-polarized emitter and (b) the x-polarized emitter. The emitter is placed 20 nm from the nanoantenna along the y-axis and 10 nm above the substrate. Since the magnitude of the Poynting vector diverges at the position of the emitter, we selected the x-y and y-z cross-section planes that were respectively 20 nm and 10 nm from the emitter’s position. The x-y cross section includes the top surface of the nanoantenna. The magnitude distributions are individually normalized and plotted on a log scale. The streamlines directed into the nanoantenna and toward the free space are white and black, respectively.
Fig. 5
Fig. 5 Far-field patterns of the total radiation and its enhancement. The far-field patterns on the northern hemispheres are mapped using the equations x = θcosϕ, y = θsinϕ, where ϕ and θ are polar and azimuthal angles in spherical coordinates. (a) Far-field radiation patterns of the y- and x-polarized emitters located 10 nm from the substrate in the absence of the nanoantenna. (b) Far-field radiation patterns of the nanoantenna on the glass substrate coupled to the y-polarized emitter depending on the wavelength. The emitter is 20 nm from the nanoantenna along the y-axis and 10 nm above the substrate. Far-field radiation enhancement patterns also are obtained by calculating the ratio of the far-field radiation intensities with and without the nanoantenna. Red and blue indicate the enhancement and the suppression, respectively, of the far-field radiation due to the nanoantenna. (c) Far-field patterns of the total radiation and its enhancement for the x-polarized emitter.
Fig. 6
Fig. 6 Spectra of the power flow enhancement factors with respect to the distance d = 40-150 nm between the (a) y-polarized emitter and (b) x-polarized emitter and the nanoantenna. Far-field radiation patterns for the (c) y-polarized emitter and (d) x-polarized emitter at various distances from 20 to 400 nm from the nanoantenna at the resonant wavelength of the dipole mode, λ = 650 nm.

Tables (1)

Tables Icon

Table 1 Parameters of Drude critical points model to fit the experimental data of gold

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S tot = 1 2 Re{ E tot × H tot * } = 1 2 Re{ E inc × H inc * + E scat × H inc * + E inc × H scat * }+ 1 2 Re{ E scat × H scat * } = S out + S scat .
K tot = < E S tot d a > < P 0 > .
K rad = < T S tot d a > < P 0 >
K nr = < A S tot d a > < P 0 > ,
K scat = < A S scat d a > < P 0 > = < T S scat d a > < P 0 > .
< A S out d a > < P 0 > = < A S tot d a > < P 0 > + < A S scat d a > < P 0 > ,
K fs = < T S out d a > < P 0 > ,
ε(ω)= ε ω 0 2 ω 2 +i γ 0 ω + n=1 2 [ ω n A n e +i ϕ n ω n ωi γ n + ω n A n e i ϕ n ω n +ω+i γ n ] .

Metrics