Abstract

We present a compact, ultra-narrow-linewidth semiconductor laser based on a 780 nm distributed feedback diode laser optically self-locked to a mode of an external monolithic confocal Fabry-Perot resonator. We characterize spectral properties of the laser by measuring its frequency noise power spectral density. The white frequency noise levels at 5 Hz2/Hz above a Fourier frequency as small as 20 kHz. This noise level is more than five orders of magnitude smaller than the noise level of the same solitary diode laser without resonant optical feedback, and it is three orders of magnitude smaller than the noise level of a narrow linewidth, grating-based, extended-cavity diode laser. The corresponding Lorentzian linewidth of the laser with resonant optical feedback is 15.7 Hz at an output power exceeding 50 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity

Fang Wei, Fei Yang, Xi Zhang, Dan Xu, Meng Ding, Li Zhang, Dijun Chen, Haiwen Cai, Zujie Fang, and Gu Xijia
Opt. Express 24(15) 17406-17415 (2016)

Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

Polnop Samutpraphoot, Sophie Weber, Qian Lin, Dorian Gangloff, Alexei Bylinskii, Boris Braverman, Akio Kawasaki, Christoph Raab, Wilhelm Kaenders, and Vladan Vuletić
Opt. Express 22(10) 11592-11599 (2014)

External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry–Perot cavity optical feedback

Yang Zhao, Yu Peng, Tao Yang, Ye Li, Qiang Wang, Fei Meng, Jianping Cao, Zhanjun Fang, Tianchu Li, and Erjun Zang
Opt. Lett. 36(1) 34-36 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Kahn, “Modulation and detection techniques for optical communication systems,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, Technical Digest (CD) (Optical Society of America, 2006), paper CThC1.
  2. F.-L. Hong and H. Katori, “Frequency metrology with optical lattice clocks,” Jpn. J. Appl. Phys. 49(8), 080001 (2010).
    [Crossref]
  3. B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
    [Crossref]
  4. D. Shaddock, “Space-based gravitational wave detection with LISA,” Class. Quantum Gravity 25(11), 114012 (2008).
    [Crossref]
  5. P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
    [Crossref]
  6. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
    [Crossref]
  7. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987).
    [Crossref] [PubMed]
  8. P. Laurent, A. Clairon, and C. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
    [Crossref]
  9. E. Luvsandamdin, C. Kürbis, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space,” Opt. Express 22(7), 7790–7798 (2014).
    [Crossref] [PubMed]
  10. K. Döringshoff, I. Ernsting, R.-H. Rinkleff, S. Schiller, and A. Wicht, “Low-noise, tunable diode laser for ultra-high-resolution spectroscopy,” Opt. Lett. 32(19), 2876–2878 (2007).
    [Crossref] [PubMed]
  11. H. Patrick and C. E. Wieman, “Frequency stabilization of a diode laser using simultaneous optical feedback from a diffraction grating and a narrowband Fabry-Pérot cavity,” Rev. Sci. Instrum. 62(11), 2593–2595 (1991).
    [Crossref]
  12. Y. Zhao, Y. Peng, T. Yang, Y. Li, Q. Wang, F. Meng, J. Cao, Z. Fang, T. Li, and E. Zang, “External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback,” Opt. Lett. 36(1), 34–36 (2011).
    [Crossref] [PubMed]
  13. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
    [Crossref] [PubMed]
  14. Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, and E. Zang, “High-finesse cavity external optical feedback DFB laser with hertz relative linewidth,” Opt. Lett. 37(22), 4729–4731 (2012).
    [Crossref] [PubMed]
  15. M. Schiemangk, S. Spiessberger, A. Wicht, G. Erbert, G. Tränkle, and A. Peters, “Accurate frequency noise measurement of free-running lasers,” Appl. Opt. 53(30), 7138–7143 (2014).
    [Crossref] [PubMed]
  16. H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser Linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
    [Crossref]
  17. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  18. O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810nm range and epitaxial grating design,” Semicond. Sci. Technol. 29(9), 095018 (2014).
    [Crossref]
  19. With our setup we measure frequency noise power spectral density Sv(f) whereas phase noise spectral density ℒ(f) was measured by Liang et al. [13]. The relation between these quantities is: Sv(f)=2f2ℒ(f).

2014 (3)

2012 (2)

Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, and E. Zang, “High-finesse cavity external optical feedback DFB laser with hertz relative linewidth,” Opt. Lett. 37(22), 4729–4731 (2012).
[Crossref] [PubMed]

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

2011 (1)

2010 (2)

2008 (2)

D. Shaddock, “Space-based gravitational wave detection with LISA,” Class. Quantum Gravity 25(11), 114012 (2008).
[Crossref]

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

2007 (1)

1998 (1)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser Linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

1991 (1)

H. Patrick and C. E. Wieman, “Frequency stabilization of a diode laser using simultaneous optical feedback from a diffraction grating and a narrowband Fabry-Pérot cavity,” Rev. Sci. Instrum. 62(11), 2593–2595 (1991).
[Crossref]

1989 (1)

P. Laurent, A. Clairon, and C. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

1987 (1)

1986 (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Breant, C.

P. Laurent, A. Clairon, and C. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

Brox, O.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810nm range and epitaxial grating design,” Semicond. Sci. Technol. 29(9), 095018 (2014).
[Crossref]

Bugge, F.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810nm range and epitaxial grating design,” Semicond. Sci. Technol. 29(9), 095018 (2014).
[Crossref]

Canuel, B.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Cao, J.

Cao, S.

Cheinet, P.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Clairon, A.

P. Laurent, A. Clairon, and C. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

Dahmani, B.

Danzmann, K.

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

Döringshoff, K.

Drullinger, R.

Erbert, G.

Ernsting, I.

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Fang, Z.

Folkner, W.

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

Gauguet, A.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Heinzel, G.

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Hollberg, L.

Hong, F.-L.

F.-L. Hong and H. Katori, “Frequency metrology with optical lattice clocks,” Jpn. J. Appl. Phys. 49(8), 080001 (2010).
[Crossref]

Ilchenko, V. S.

Kaivola, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser Linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Katori, H.

F.-L. Hong and H. Katori, “Frequency metrology with optical lattice clocks,” Jpn. J. Appl. Phys. 49(8), 080001 (2010).
[Crossref]

Klipstein, W.

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Kürbis, C.

Landragin, A.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Laurent, P.

P. Laurent, A. Clairon, and C. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

Li, T.

Li, Y.

Liang, W.

Lin, B.

Lin, Y.

Ludvigsen, H.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser Linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Luvsandamdin, E.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810nm range and epitaxial grating design,” Semicond. Sci. Technol. 29(9), 095018 (2014).
[Crossref]

E. Luvsandamdin, C. Kürbis, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space,” Opt. Express 22(7), 7790–7798 (2014).
[Crossref] [PubMed]

Maleki, L.

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Matsko, A. B.

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Meng, F.

Mogilatenko, A.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810nm range and epitaxial grating design,” Semicond. Sci. Technol. 29(9), 095018 (2014).
[Crossref]

Patrick, H.

H. Patrick and C. E. Wieman, “Frequency stabilization of a diode laser using simultaneous optical feedback from a diffraction grating and a narrowband Fabry-Pérot cavity,” Rev. Sci. Instrum. 62(11), 2593–2595 (1991).
[Crossref]

Peng, Y.

Pereira Dos Santos, F.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Peters, A.

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Rinkleff, R.-H.

Sahm, A.

Savchenkov, A. A.

Schiemangk, M.

Schiller, S.

Seidel, D.

Shaddock, D.

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

D. Shaddock, “Space-based gravitational wave detection with LISA,” Class. Quantum Gravity 25(11), 114012 (2008).
[Crossref]

Sheard, B.

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

Spiessberger, S.

Tossavainen, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser Linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Tränkle, G.

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Wang, Q.

Wang, S.

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Wenzel, H.

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810nm range and epitaxial grating design,” Semicond. Sci. Technol. 29(9), 095018 (2014).
[Crossref]

Wicht, A.

Wieman, C. E.

H. Patrick and C. E. Wieman, “Frequency stabilization of a diode laser using simultaneous optical feedback from a diffraction grating and a narrowband Fabry-Pérot cavity,” Rev. Sci. Instrum. 62(11), 2593–2595 (1991).
[Crossref]

Yang, T.

Yver-Leduc, F.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Zang, E.

Zhao, Y.

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

Appl. Opt. (1)

Class. Quantum Gravity (1)

D. Shaddock, “Space-based gravitational wave detection with LISA,” Class. Quantum Gravity 25(11), 114012 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Laurent, A. Clairon, and C. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25(6), 1131–1142 (1989).
[Crossref]

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

J. Geod. (1)

B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, and W. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J. Geod. 86(12), 1083–1095 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

F.-L. Hong and H. Katori, “Frequency metrology with optical lattice clocks,” Jpn. J. Appl. Phys. 49(8), 080001 (2010).
[Crossref]

Opt. Commun. (2)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5–6), 541–549 (1995).
[Crossref]

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser Linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1–3), 180–186 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

H. Patrick and C. E. Wieman, “Frequency stabilization of a diode laser using simultaneous optical feedback from a diffraction grating and a narrowband Fabry-Pérot cavity,” Rev. Sci. Instrum. 62(11), 2593–2595 (1991).
[Crossref]

Semicond. Sci. Technol. (1)

O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, and G. Erbert, “Distributed feedback lasers in the 760 to 810nm range and epitaxial grating design,” Semicond. Sci. Technol. 29(9), 095018 (2014).
[Crossref]

Other (2)

With our setup we measure frequency noise power spectral density Sv(f) whereas phase noise spectral density ℒ(f) was measured by Liang et al. [13]. The relation between these quantities is: Sv(f)=2f2ℒ(f).

J. Kahn, “Modulation and detection techniques for optical communication systems,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, Technical Digest (CD) (Optical Society of America, 2006), paper CThC1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Laser schematic and measurement setup (a); transmission spectrum of the confocal cavity in the absence of coupling to the laser diode (b).
Fig. 2
Fig. 2 Measured frequency noise power spectral density: free running DFB laser (red), ECDL acc. to [9] (blue), and DFB laser with resonant optical feedback (black). Peaks at multiples of 100 kHz are measurement artefacts of the delayed self-homodyne measurement.
Fig. 3
Fig. 3 RF-Power spectra of the beat note signal for the free running DFB-laser (black) and with resonant optical feedback at different feedback levels. The green and blue curves are recorded with an attenuator placed between the DFB-laser and the external cavity (single-pass transmission factor 0.3 and 0.69 respectively). The red curve is recorded without an attenuator.

Tables (1)

Tables Icon

Table 1 Basic properties of the lasers and cavities described in this paper and in [13,14]

Metrics