Abstract

A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optofluidic in-fiber interferometer based on hollow optical fiber with two cores

Tingting Yuan, Xinghua Yang, Zhihai Liu, Jun Yang, Song Li, Depeng Kong, Xiuxiu Qi, Wenting Yu, Qunlong Long, and Libo Yuan
Opt. Express 25(15) 18205-18215 (2017)

Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity

Yuan Gong, Chenlin Zhang, Qun-Feng Liu, Yu Wu, Huijuan Wu, Yunjiang Rao, and Gang-Ding Peng
Opt. Express 23(3) 3762-3769 (2015)

Integrated hollow-core fibers for nonlinear optofluidic applications

Limin Xiao, Natalie V. Wheeler, Noel Healy, and Anna C. Peacock
Opt. Express 21(23) 28751-28757 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  2. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
    [Crossref]
  3. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  4. H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
    [Crossref] [PubMed]
  5. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  6. C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  7. A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
    [Crossref]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  9. M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
    [Crossref] [PubMed]
  10. Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
    [Crossref] [PubMed]
  11. X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
    [Crossref] [PubMed]
  12. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  13. C. L. Linslal, S. Mathew, P. Radhakrishnan, V. P. Nampoori, C. P. Girijavallabhan, and M. Kailasnath, “Laser emission from the whispering gallery modes of a graded index fiber,” Opt. Lett. 38(17), 3261–3263 (2013).
    [Crossref] [PubMed]
  14. H. Zhou, G. Feng, K. Yao, C. Yang, J. Yi, and S. Zhou, “Fiber-based tunable microcavity fluidic dye laser,” Opt. Lett. 38(18), 3604–3607 (2013).
    [Crossref] [PubMed]
  15. S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [Crossref]
  16. H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
    [Crossref] [PubMed]
  17. X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phy. Lett. 91, 073512(2007).
  18. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
    [Crossref] [PubMed]
  19. X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
    [Crossref]
  20. M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004).
    [Crossref] [PubMed]
  21. Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
    [Crossref]
  22. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
    [Crossref] [PubMed]
  23. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [Crossref] [PubMed]
  24. C. J. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
    [Crossref] [PubMed]
  25. F. M. Cox, A. Argyros, and M. C. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [Crossref] [PubMed]
  26. Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
    [Crossref] [PubMed]
  27. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13(17), 6541–6549 (2005).
    [Crossref] [PubMed]
  28. Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

2014 (3)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

2013 (5)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

C. L. Linslal, S. Mathew, P. Radhakrishnan, V. P. Nampoori, C. P. Girijavallabhan, and M. Kailasnath, “Laser emission from the whispering gallery modes of a graded index fiber,” Opt. Lett. 38(17), 3261–3263 (2013).
[Crossref] [PubMed]

H. Zhou, G. Feng, K. Yao, C. Yang, J. Yi, and S. Zhou, “Fiber-based tunable microcavity fluidic dye laser,” Opt. Lett. 38(18), 3604–3607 (2013).
[Crossref] [PubMed]

2012 (1)

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

2011 (3)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

2007 (7)

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phy. Lett. 91, 073512(2007).

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
[Crossref] [PubMed]

C. J. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

2006 (3)

F. M. Cox, A. Argyros, and M. C. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[Crossref] [PubMed]

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2000 (1)

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

An, K.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

Argyros, A.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Auguste, J. L.

Birks, T.

Blondy, J.-M.

Bozolan, A.

Brambilla, G.

Brito Cruz, C. H.

Chen, Q.

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Chough, Y. T.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

Chua, S. L.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Cordeiro, C. M.

Cox, F. M.

Craighead, H.

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

De Matos, C. J.

Domachuk, P.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Dos Santos, E. M.

Eggleton, B.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Fan, C.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Fan, X.

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Fan, X. D.

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Feng, G.

Fink, Y.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fu, J.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Gérôme, F.

Girijavallabhan, C. P.

Guo, X.

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phy. Lett. 91, 073512(2007).

Han, T.

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Humbert, G.

Jamier, R.

Jiang, X. S.

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phy. Lett. 91, 073512(2007).

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Joannopoulos, J. D.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Kailasnath, M.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Large, M. C.

Lee, W.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Leon-Saval, S.

Li, M.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Li, S.

Li, Y. H.

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phy. Lett. 91, 073512(2007).

Li, Z. L.

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Linslal, C. L.

Liu, H.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Liu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Liu, Y. G.

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
[Crossref] [PubMed]

Ma, Y.

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Mathew, S.

Monat, C.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Moon, H. J.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

Nampoori, V. P.

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Ong, J. S.

Oo, M. K. K.

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

Pei, H.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Radhakrishnan, P.

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Reddy, K.

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Shapira, O.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Shopova, S. I.

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Song, Q. H.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Sorin, F.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Stolyarov, A. M.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Sumetsky, M.

Sun, Y.

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Tian, J. G.

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Tong, L. M.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phy. Lett. 91, 073512(2007).

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Wadsworth, W.

Wang, Z.

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Wei, H.

Wei, H. F.

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Wei, L.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Witkowska, A.

Wu, X.

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Wu, Z.

Xu, F.

Xu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

Yan, M.

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

Yang, C.

Yao, K.

Ye, Q.

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Yi, J.

Ying, C. F.

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Zhang, P.

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhou, H.

Zhou, H. Y.

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhou, S.

Zhou, W. Y.

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Zhu, D.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Appl. Phy. Lett. (2)

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phy. Lett. 91, 073512(2007).

Z. L. Li, W. Y. Zhou, Y. G. Liu, Q. Ye, Y. Ma, H. F. Wei, and J. G. Tian, “Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber,” Appl. Phy. Lett. 102, 011136 (2013).

Appl. Phys. Lett. (3)

Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, and J. G. Tian, “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Appl. Phys. Lett. 105(7), 071902 (2014).
[Crossref]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[Crossref]

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Lab Chip (1)

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nat. Commun. 5, 3779 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6(4), 229–233 (2012).
[Crossref]

Nature (3)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85(15), 3161–3164 (2000).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Optical micrograph of the cross section of the SHMOF. (b) An image of the longitudinal profile of the fiber with an outer cladding diameter of 170 μm. (c) An image of the longitudinal profile of the tapered fiber with an outer cladding diameter of 113 μm. (d)–(h) are the calculated field distributions of several typical modes (at 532 nm) supported by SHMOF. (i)–(o) are some calculated higher-order modes (at 585 nm) guided in the dye-filled LC-SMOFs.
Fig. 2
Fig. 2 (a) The configuration of the tapered fiber-based microring dye laser system. Inset: the enlarged liquid column in the fiber core. (b) The filtered output of the lasing ring on a conical screen on the lateral side of the SHMOF, with the gain medium of R6G (left) and RhB (right).
Fig. 3
Fig. 3 (a) Normalized output lasing energy as a function of the pump energy. Inset: The measured lasing spectrum at pump energies given in Fig. 3(a) below the threshold (black line) and above the threshold (red line), with the same color intensity scale on the left side and right side, respectively. (b) The resolved spectra above the laser threshold. The measured separation of the individual lasing peaks was ΔλN = 2.8 nm.
Fig. 4
Fig. 4 (a) The measured resonance wavelength of the N = 138th and N = 139th lasing longitudinal modes as a function of various locations of the surface of the gain medium relative to the center of the tapered region. (b) and (c) are the measured normalized lasing spectra corresponding to N = 138th and N = 139th longitudinal modes, respectively.
Fig. 5
Fig. 5 The measured variation of the calculated cavity lengths (red squares), measured cavity lengths (red line and dots) and the laser threshold (blue line and dots) along the length of the tapered fiber are plotted. The calculated cavity lengths ranged from 57.9 μm to 89.0 μm, the measured cavity lengths ranged from 59.9 μm to 90.9 μm and the thresholds ranged from 16 nJ to 44 nJ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N λ N = n eff L c ,
L c = λ N 2 / ( n eff Δ λ N ) ,

Metrics