Abstract

With high efficiency and small thermally-induced effects in the near-infrared wavelength region, a diode-pumped alkali laser (DPAL) is regarded as combining the major advantages of solid-state lasers and gas-state lasers and obviating their main disadvantages at the same time. Studying the temperature distribution in the cross-section of an alkali-vapor cell is critical to realize high-powered DPAL systems for both static and flowing states. In this report, a theoretical algorithm has been built to investigate the features of a flowing-gas DPAL system by uniting procedures in kinetics, heat transfer, and fluid dynamic together. The thermal features and output characteristics have been simultaneously obtained for different gas velocities. The results have demonstrated the great potential of DPALs in the extremely high-powered laser operation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang
Opt. Express 22(11) 13988-14003 (2014)

Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers

Boris D. Barmashenko and Salman Rosenwaks
J. Opt. Soc. Am. B 30(5) 1118-1126 (2013)

Optimization of physical conditions for a diode-pumped cesium vapor laser

Guofei An, You Wang, Juhong Han, He Cai, Shunyan Wang, Hang Yu, Kepeng Rong, Wei Zhang, Liangping Xue, Hongyuan Wang, and Jie Zhou
Opt. Express 25(4) 4335-4347 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  2. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
    [Crossref] [PubMed]
  3. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
    [Crossref]
  4. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
    [Crossref] [PubMed]
  5. V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
    [Crossref]
  6. M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
    [Crossref] [PubMed]
  7. G. P. Gupta, S. Mathur, and S. C. Saxena, “Certain Methods for Calculating Thermal Conductivity of ulticomponent Mixtures Involving Polyatomic Gases,” Def. Sci. J. 18(4), 195–204 (2014).
  8. C. L. Yaws and W. Braker, eds., Matheson Gas Data Book, VII (McGraw-Hill & Matheson Tri-Gas, 2001), Appendix 23.
  9. W. Zhang, Y. Wang, H. Cai, L. P. Xue, J. H. Han, H. Y. Wang, and Z. Y. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
    [Crossref] [PubMed]
  10. B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
    [Crossref] [PubMed]
  11. J. H. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
    [Crossref] [PubMed]
  12. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  13. B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
    [Crossref]
  14. S. Rosenwaks, B. D. Barmashenko, and F. Waichman, “Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation,” Proc. SPIE High Energy/Average Power Lasers and Intense Beam Applications VII 8962(896209), 1–9 (2014).
  15. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing gas diode pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
    [Crossref]
  16. Z. N. Yang, H. Y. Wang, Q. S. Lu, W. H. Hua, and X. J. Xu, “Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission,” Opt. Express 19(23), 23118–23131 (2011).
    [Crossref] [PubMed]
  17. H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Wang, and G. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
    [Crossref]
  18. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  19. J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, eds., Computational Fluid Dynamics and Heat Transfer, II (Taylor & Francis, 1997), Chap. 5.
  20. M. J. Latif, ed., Heat Conduction, III (Verlag GmbH & Co. K, 2009), Chap. 1.
  21. B. P. Dailey and W. A. Felsing, “The Heat Capacities at Higher Temperatures of Ethane and Propane,” JACS 65(1), 42–44 (1943).
    [Crossref]
  22. S. M. Gatica, E. S. Hernández, and L. Szybisz, “Heat capacity of helium in cylindrical environments,” Phys. Rev. 68(14), 144501 (2003).
  23. G. P. Gupta and S. C. Saxena, “Calculation of Thermal Conductivity of Polyatomic Gas Mixtures at high Temperatures,” Def. Sci. J. 16(3), 165–176 (1966).
  24. S. Mathur and S. C. Saxena, “Calculation of Thermal Conductivity of ternary mixture of polyatomic gases,” Indian J. Pure Appl. Phys. 5(4), 114 (1967).
  25. X. D. Shan and M. R. Wang, “Understanding of Thermal Conductance of Thin Gas Layers,” Adv. Mech. Eng. 2013, 1–7 (2013).
    [Crossref]

2015 (1)

2014 (7)

G. P. Gupta, S. Mathur, and S. C. Saxena, “Certain Methods for Calculating Thermal Conductivity of ulticomponent Mixtures Involving Polyatomic Gases,” Def. Sci. J. 18(4), 195–204 (2014).

W. Zhang, Y. Wang, H. Cai, L. P. Xue, J. H. Han, H. Y. Wang, and Z. Y. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
[Crossref] [PubMed]

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

S. Rosenwaks, B. D. Barmashenko, and F. Waichman, “Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation,” Proc. SPIE High Energy/Average Power Lasers and Intense Beam Applications VII 8962(896209), 1–9 (2014).

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing gas diode pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Wang, and G. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
[Crossref]

2013 (3)

X. D. Shan and M. R. Wang, “Understanding of Thermal Conductance of Thin Gas Layers,” Adv. Mech. Eng. 2013, 1–7 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

2012 (1)

2011 (1)

2008 (1)

2006 (2)

R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
[Crossref] [PubMed]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

2004 (1)

2003 (2)

S. M. Gatica, E. S. Hernández, and L. Szybisz, “Heat capacity of helium in cylindrical environments,” Phys. Rev. 68(14), 144501 (2003).

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

1967 (1)

S. Mathur and S. C. Saxena, “Calculation of Thermal Conductivity of ternary mixture of polyatomic gases,” Indian J. Pure Appl. Phys. 5(4), 114 (1967).

1966 (1)

G. P. Gupta and S. C. Saxena, “Calculation of Thermal Conductivity of Polyatomic Gas Mixtures at high Temperatures,” Def. Sci. J. 16(3), 165–176 (1966).

1943 (1)

B. P. Dailey and W. A. Felsing, “The Heat Capacities at Higher Temperatures of Ethane and Propane,” JACS 65(1), 42–44 (1943).
[Crossref]

Affolderbach, C.

V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
[Crossref]

An, G.

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Wang, and G. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Barmashenko, B. D.

Beach, R. J.

Boyadjian, G.

Cai, H.

Dailey, B. P.

B. P. Dailey and W. A. Felsing, “The Heat Capacities at Higher Temperatures of Ethane and Propane,” JACS 65(1), 42–44 (1943).
[Crossref]

Dubinskii, M. A.

Felsing, W. A.

B. P. Dailey and W. A. Felsing, “The Heat Capacities at Higher Temperatures of Ethane and Propane,” JACS 65(1), 42–44 (1943).
[Crossref]

Fukuoka, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Gatica, S. M.

S. M. Gatica, E. S. Hernández, and L. Szybisz, “Heat capacity of helium in cylindrical environments,” Phys. Rev. 68(14), 144501 (2003).

Gupta, G. P.

G. P. Gupta, S. Mathur, and S. C. Saxena, “Certain Methods for Calculating Thermal Conductivity of ulticomponent Mixtures Involving Polyatomic Gases,” Def. Sci. J. 18(4), 195–204 (2014).

G. P. Gupta and S. C. Saxena, “Calculation of Thermal Conductivity of Polyatomic Gas Mixtures at high Temperatures,” Def. Sci. J. 16(3), 165–176 (1966).

Han, J. H.

Hernández, E. S.

S. M. Gatica, E. S. Hernández, and L. Szybisz, “Heat capacity of helium in cylindrical environments,” Phys. Rev. 68(14), 144501 (2003).

Hiruma, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Hua, W. H.

Kan, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Kang, S.

V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
[Crossref]

Kanz, V. K.

Kasamatsu, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Knize, R. J.

Krupke, W. F.

Kubomura, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Liao, Z. Y.

Lilly, T. C.

Lu, Q. S.

Mathur, S.

G. P. Gupta, S. Mathur, and S. C. Saxena, “Certain Methods for Calculating Thermal Conductivity of ulticomponent Mixtures Involving Polyatomic Gases,” Def. Sci. J. 18(4), 195–204 (2014).

S. Mathur and S. C. Saxena, “Calculation of Thermal Conductivity of ternary mixture of polyatomic gases,” Indian J. Pure Appl. Phys. 5(4), 114 (1967).

Matsuoka, S.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Merkle, L. D.

Mileti, G.

V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
[Crossref]

Miyajima, H.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Niigaki, M.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Page, R. H.

Payne, S. A.

Rosenwaks, S.

Saxena, S. C.

G. P. Gupta, S. Mathur, and S. C. Saxena, “Certain Methods for Calculating Thermal Conductivity of ulticomponent Mixtures Involving Polyatomic Gases,” Def. Sci. J. 18(4), 195–204 (2014).

S. Mathur and S. C. Saxena, “Calculation of Thermal Conductivity of ternary mixture of polyatomic gases,” Indian J. Pure Appl. Phys. 5(4), 114 (1967).

G. P. Gupta and S. C. Saxena, “Calculation of Thermal Conductivity of Polyatomic Gas Mixtures at high Temperatures,” Def. Sci. J. 16(3), 165–176 (1966).

Shaffer, M. K.

Shan, X. D.

X. D. Shan and M. R. Wang, “Understanding of Thermal Conductance of Thin Gas Layers,” Adv. Mech. Eng. 2013, 1–7 (2013).
[Crossref]

Shea, H.

V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
[Crossref]

Stooke, A.

Szybisz, L.

S. M. Gatica, E. S. Hernández, and L. Szybisz, “Heat capacity of helium in cylindrical environments,” Phys. Rev. 68(14), 144501 (2003).

Venkatraman, V.

V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
[Crossref]

Voci, A.

Waichman, F.

S. Rosenwaks, B. D. Barmashenko, and F. Waichman, “Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation,” Proc. SPIE High Energy/Average Power Lasers and Intense Beam Applications VII 8962(896209), 1–9 (2014).

Waichman, K.

Wang, H.

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Wang, and G. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Wang, H. Y.

Wang, M. R.

X. D. Shan and M. R. Wang, “Understanding of Thermal Conductance of Thin Gas Layers,” Adv. Mech. Eng. 2013, 1–7 (2013).
[Crossref]

Wang, Y.

J. H. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Wang, and G. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

W. Zhang, Y. Wang, H. Cai, L. P. Xue, J. H. Han, H. Y. Wang, and Z. Y. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
[Crossref] [PubMed]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Xu, X. J.

Xue, L.

Xue, L. P.

W. Zhang, Y. Wang, H. Cai, L. P. Xue, J. H. Han, H. Y. Wang, and Z. Y. Liao, “Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes,” Appl. Opt. 53(19), 4180–4186 (2014).
[Crossref] [PubMed]

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Wang, and G. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Yang, Z. N.

Zhang, W.

Zhdanov, B. V.

Zheng, Y.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Adv. Mech. Eng. (1)

X. D. Shan and M. R. Wang, “Understanding of Thermal Conductance of Thin Gas Layers,” Adv. Mech. Eng. 2013, 1–7 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

H. Cai, Y. Wang, L. P. Xue, W. Zhang, J. H. Han, H. Wang, and G. An, “Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser,” Appl. Phys. B 117(4), 1201–1210 (2014).
[Crossref]

Appl. Phys. Lett. (3)

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, and G. Mileti, “Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source,” Appl. Phys. Lett. 104(5), 054104 (2014).
[Crossref]

Def. Sci. J. (2)

G. P. Gupta, S. Mathur, and S. C. Saxena, “Certain Methods for Calculating Thermal Conductivity of ulticomponent Mixtures Involving Polyatomic Gases,” Def. Sci. J. 18(4), 195–204 (2014).

G. P. Gupta and S. C. Saxena, “Calculation of Thermal Conductivity of Polyatomic Gas Mixtures at high Temperatures,” Def. Sci. J. 16(3), 165–176 (1966).

Indian J. Pure Appl. Phys. (1)

S. Mathur and S. C. Saxena, “Calculation of Thermal Conductivity of ternary mixture of polyatomic gases,” Indian J. Pure Appl. Phys. 5(4), 114 (1967).

J. Opt. Soc. Am. B (3)

JACS (1)

B. P. Dailey and W. A. Felsing, “The Heat Capacities at Higher Temperatures of Ethane and Propane,” JACS 65(1), 42–44 (1943).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. (1)

S. M. Gatica, E. S. Hernández, and L. Szybisz, “Heat capacity of helium in cylindrical environments,” Phys. Rev. 68(14), 144501 (2003).

Proc. SPIE High Energy/Average Power Lasers and Intense Beam Applications VII (1)

S. Rosenwaks, B. D. Barmashenko, and F. Waichman, “Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation,” Proc. SPIE High Energy/Average Power Lasers and Intense Beam Applications VII 8962(896209), 1–9 (2014).

Other (3)

J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, eds., Computational Fluid Dynamics and Heat Transfer, II (Taylor & Francis, 1997), Chap. 5.

M. J. Latif, ed., Heat Conduction, III (Verlag GmbH & Co. K, 2009), Chap. 1.

C. L. Yaws and W. Braker, eds., Matheson Gas Data Book, VII (McGraw-Hill & Matheson Tri-Gas, 2001), Appendix 23.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration for segmentation procedure of a flowing-gas cell.
Fig. 2
Fig. 2 Diagram for representing the relationship of generated heat, transferred heat and flowed heat in the cross-section of a vapor cell.
Fig. 3
Fig. 3 Temperature distributions in the cross-section of a cell with different velocities of the mixed gases when the pump power is 1000 W.
Fig. 4
Fig. 4 Population distributions with different velocities of the mixed gases when the pump power is 1000 W.
Fig. 5
Fig. 5 Output power (a) and heat features (b) of a Cs-DPAL system versus the flowing velocity of mixed gases with the pump power of 1000 W.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

r j =R( j1 )·R/N, r j+1 =Rj·R/N,
d n 1 j dt =0= Γ p j + Γ L j + n 2 j τ D 1 + n 3 j τ D 2 , d n 2 j dt =0= Γ L j + γ 32 ( T j )[ n 3 j 2 n 2 j exp( ΔE k B T j ) ] n 2 j τ D 1 , d n 3 j dt =0= Γ p j γ 32 ( T j )[ n 3 j 2 n 2 j exp( ΔE k B T j ) ] n 3 j τ D 2 ,
exp[ 2( n 2 j ( T j )- n 1 j ( T j ) ) σ D 1 He-broadened ( T j )l ]×T T 2 R oc =1,
n 0 j ( T j )= n 1 j ( T j )+ n 2 j ( T j )+ n 3 j ( T j ),
n 0 j ( T j )= n 0 1 ( T w )( T w T j ),
Q j = V L i γ 32 ( T j )[ n 3 j 2 n 2 j exp( ΔE k B T j )]ΔE,
Re 2ρUR μ ,
x D 0.05Re( 2R )=1350 mm.
F j = S j Un( T j ) N A T w T j C p (T)dT ,
C P (T)= P He P He + P C 2 H 6 C PHe (T)+ P C 2 H 6 P He + P C 2 H 6 C P C 2 H 6 (T),
Φ j =[ K( T j ) A j dT dr ] | T= T j .
Φ j =K( T j ) A j T j+1 T j r j+1 r j ,
K( T j )= P He P He + P C 2 H 6 K He ( T j )+ P C 2 H 6 P He + P C 2 H 6 K C 2 H 6 ( T j ),
A=2π r j L.
P thermal = i=1 N Q i i=1 N F i .

Metrics