Abstract

In this work three Fabry-Perot (FP) resonant cavities based on vertical silicon/air one-dimensional photonic crystals (1DPhCs) featuring different architectures and fluidic functionalities are designed, and the role of key design parameters on their ideal biosensing performance, i.e. surface sensitivity, limit of detection, range of linearity, is investigated. Numerical calculations of the transmission spectra of the 1DPhC FP resonant cavities using the Transfer Matrix Method (TMM), versus thickness of a biolayer simulating biomolecules (e.g. proteins) adsorbed on the 1DPhC FP cavity surfaces, show that biosensors with surface sensitivity up to 300 pm/nm, limit of detection down to 0.07 nm, and high linearity over the range 0-50 nm of biolayer thickness can be achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator

Saeed Olyaee and Samira Najafgholinezhad
Appl. Opt. 52(29) 7206-7213 (2013)

Photonic crystal microring resonator for label-free biosensing

Stanley M. Lo, Shuren Hu, Girija Gaur, Yiorgos Kostoulas, Sharon M. Weiss, and Philippe M. Fauchet
Opt. Express 25(6) 7046-7054 (2017)

Hybrid cavity-coupled plasmonic biosensors for low concentration, label-free and selective biomolecular detection.

Abraham Vázquez-Guardado, Alexandra Smith, Wade Wilson, Jeanette Ortega, J. Manuel Perez, and Debashis Chanda
Opt. Express 24(22) 25785-25796 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
    [Crossref] [PubMed]
  2. H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007).
    [Crossref] [PubMed]
  3. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]
  4. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  5. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001).
    [Crossref] [PubMed]
  6. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  7. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
    [Crossref]
  8. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  9. Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
    [Crossref]
  10. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
    [Crossref] [PubMed]
  11. Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
    [Crossref]
  12. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
    [Crossref] [PubMed]
  13. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
    [Crossref] [PubMed]
  14. S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
    [Crossref] [PubMed]
  15. S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
    [Crossref]
  16. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  17. M. Renilkumar and P. Nair, “Low-loss optical channel drop filters based on high-contrast Si–air photonic crystals by wet anisotropic etching,” Appl. Opt. 50(25), E59–E64 (2011).
    [Crossref]
  18. A. Lipson and E. M. Yeatman, “A 1-D Photonic Band Gap Tunable Optical Filter in (110) Silicon,” J. Microelectromech. Syst. 16(3), 521–527 (2007).
    [Crossref]
  19. J. M. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable Fiber Laser Using a MEMS-Based In Plane Fabry-Pèrot Filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010).
    [Crossref]
  20. R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
    [Crossref]
  21. J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
    [Crossref] [PubMed]
  22. E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
    [Crossref] [PubMed]
  23. H. A. Macleod, Thin-Film Optical Filters Fourth Edition (CRC Press, 2010) pp. 44, 218.
  24. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press LLC, 2003).
  25. F. Mazda, Telecommunications Engineer's Reference Book (Butterworth-Heinemann Ltd,1993)
  26. G. T. Reed, Silicon Photonics The State of The Art (John Wiley & Sons Ltd, 2008)
  27. A. Lipson and E. M. Yeatman, “Low-loss one-dimensional photonic bandgap filter in (110) silicon,” Opt. Lett. 31(3), 395–397 (2006).
    [Crossref] [PubMed]
  28. R. St-Gelais, A. Poulin, and Y.-A. Peter, “Advances in Modeling, Design, and Fabrication of Deep-Etched Multilayer Resonators,” J. Lightwave Technol. 30(12), 1900–1908 (2012).
    [Crossref]
  29. G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, and S. Merlo, “Optical Characterization of High-Order 1-D Silicon Photonic Crystals,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1359–1367 (2009).
    [Crossref]
  30. S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
    [Crossref]
  31. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032 (2009).
    [Crossref]
  32. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  33. M. Csele, Fundamentals of Light Sources and Lasers (John Wiley & Sons, 2004) pp. 196.
  34. M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, and L. F. Capitán-Vallvey, “An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves,” Anal. Bioanal. Chem. 401(9), 2881–2889 (2011).
    [Crossref] [PubMed]

2014 (1)

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
[Crossref]

2013 (1)

S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
[Crossref]

2012 (2)

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

R. St-Gelais, A. Poulin, and Y.-A. Peter, “Advances in Modeling, Design, and Fabrication of Deep-Etched Multilayer Resonators,” J. Lightwave Technol. 30(12), 1900–1908 (2012).
[Crossref]

2011 (4)

M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, and L. F. Capitán-Vallvey, “An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves,” Anal. Bioanal. Chem. 401(9), 2881–2889 (2011).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

M. Renilkumar and P. Nair, “Low-loss optical channel drop filters based on high-contrast Si–air photonic crystals by wet anisotropic etching,” Appl. Opt. 50(25), E59–E64 (2011).
[Crossref]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

2010 (3)

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

J. M. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable Fiber Laser Using a MEMS-Based In Plane Fabry-Pèrot Filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010).
[Crossref]

2009 (5)

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, and S. Merlo, “Optical Characterization of High-Order 1-D Silicon Photonic Crystals,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1359–1367 (2009).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032 (2009).
[Crossref]

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[Crossref] [PubMed]

2008 (3)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

2007 (4)

2006 (2)

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[Crossref]

A. Lipson and E. M. Yeatman, “Low-loss one-dimensional photonic bandgap filter in (110) silicon,” Opt. Lett. 31(3), 395–397 (2006).
[Crossref] [PubMed]

2004 (1)

J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

2003 (2)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

2001 (1)

Abstreiter, G.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Agarwal, A.

Annovazzi-Lodi, V.

G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, and S. Merlo, “Optical Characterization of High-Order 1-D Silicon Photonic Crystals,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1359–1367 (2009).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

Arroyo-Guerrero, E.

M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, and L. F. Capitán-Vallvey, “An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves,” Anal. Bioanal. Chem. 401(9), 2881–2889 (2011).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baldini, F.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Barillaro, G.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, and S. Merlo, “Optical Characterization of High-Order 1-D Silicon Photonic Crystals,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1359–1367 (2009).
[Crossref]

Bergstein, D. A.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Boyd, R. W.

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

Cabodi, M.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Capitán-Vallvey, L. F.

M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, and L. F. Capitán-Vallvey, “An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves,” Anal. Bioanal. Chem. 401(9), 2881–2889 (2011).
[Crossref] [PubMed]

Carpignano, F.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Cuadros-Rodríguez, L.

M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, and L. F. Capitán-Vallvey, “An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves,” Anal. Bioanal. Chem. 401(9), 2881–2889 (2011).
[Crossref] [PubMed]

Dale, P. S.

Dorfner, D.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Erickson, D.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[Crossref] [PubMed]

Fan, X.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[Crossref]

Fauchet, P. M.

Fernández-Ramos, M. D.

M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, and L. F. Capitán-Vallvey, “An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves,” Anal. Bioanal. Chem. 401(9), 2881–2889 (2011).
[Crossref] [PubMed]

Finley, J.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Frandsen, L.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Gershoni, J. M.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Giannetti, A.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Goddard, J. M.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[Crossref] [PubMed]

Goldberg, B. B.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Gonzalez, R.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Gu, Z.

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Guo, Y.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Hauke, N.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Heebner, J. E.

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hu, J.

Hürlimann, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Kimerling, L. C.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Lee, M. R.

Li, H.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Libchaber, A.

H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

Lipson, A.

A. Lipson and E. M. Yeatman, “A 1-D Photonic Band Gap Tunable Optical Filter in (110) Silicon,” J. Microelectromech. Syst. 16(3), 521–527 (2007).
[Crossref]

A. Lipson and E. M. Yeatman, “Low-loss one-dimensional photonic bandgap filter in (110) silicon,” Opt. Lett. 31(3), 395–397 (2006).
[Crossref] [PubMed]

Mandal, S.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[Crossref] [PubMed]

Masson, J.

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Masson, J. M.

J. M. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable Fiber Laser Using a MEMS-Based In Plane Fabry-Pèrot Filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010).
[Crossref]

Merlo, S.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, and S. Merlo, “Optical Characterization of High-Order 1-D Silicon Photonic Crystals,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1359–1367 (2009).
[Crossref]

Nair, P.

Needham, J. W.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Nittoor, V. R.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Oveys, H.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[Crossref]

Özkumur, E.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Peter, Y.-A.

R. St-Gelais, A. Poulin, and Y.-A. Peter, “Advances in Modeling, Design, and Fabrication of Deep-Etched Multilayer Resonators,” J. Lightwave Technol. 30(12), 1900–1908 (2012).
[Crossref]

J. M. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable Fiber Laser Using a MEMS-Based In Plane Fabry-Pèrot Filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010).
[Crossref]

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Poulin, A.

R. St-Gelais, A. Poulin, and Y.-A. Peter, “Advances in Modeling, Design, and Fabrication of Deep-Etched Multilayer Resonators,” J. Lightwave Technol. 30(12), 1900–1908 (2012).
[Crossref]

J. M. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable Fiber Laser Using a MEMS-Based In Plane Fabry-Pèrot Filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010).
[Crossref]

Rant, U.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Reddy, K.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Ren, H.-C.

Renilkumar, M.

Shelar, H. S.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Silva, G.

S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
[Crossref]

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

St-Gelais, R.

R. St-Gelais, A. Poulin, and Y.-A. Peter, “Advances in Modeling, Design, and Fabrication of Deep-Etched Multilayer Resonators,” J. Lightwave Technol. 30(12), 1900–1908 (2012).
[Crossref]

J. M. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable Fiber Laser Using a MEMS-Based In Plane Fabry-Pèrot Filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010).
[Crossref]

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Strambini, L. M.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, and S. Merlo, “Optical Characterization of High-Order 1-D Silicon Photonic Crystals,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1359–1367 (2009).
[Crossref]

Sun, X.

Surdo, S.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Suter, J. D.

Teraoka, I.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

Trono, C.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Unlü, M. S.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

Vörös, J.

J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[Crossref]

Yeatman, E. M.

A. Lipson and E. M. Yeatman, “A 1-D Photonic Band Gap Tunable Optical Filter in (110) Silicon,” J. Microelectromech. Syst. 16(3), 521–527 (2007).
[Crossref]

A. Lipson and E. M. Yeatman, “Low-loss one-dimensional photonic bandgap filter in (110) silicon,” Opt. Lett. 31(3), 395–397 (2006).
[Crossref] [PubMed]

Zabel, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Zhang, J.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[Crossref]

Zhao, X.

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Zhao, Y.

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Zhu, H.

Adv. Funct. Mater. (1)

Y. Zhao, X. Zhao, and Z. Gu, “Photonic Crystals in Bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, and L. F. Capitán-Vallvey, “An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves,” Anal. Bioanal. Chem. 401(9), 2881–2889 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

S. Surdo, F. Carpignano, G. Silva, S. Merlo, and G. Barillaro, “An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals,” Appl. Phys. Lett. 103(17), 171103 (2013).
[Crossref]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[Crossref]

R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Biophys. J. (2)

J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA Quantification by Spectroscopic Shift of Two Microsphere Cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

J. M. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable Fiber Laser Using a MEMS-Based In Plane Fabry-Pèrot Filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

G. Barillaro, L. M. Strambini, V. Annovazzi-Lodi, and S. Merlo, “Optical Characterization of High-Order 1-D Silicon Photonic Crystals,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1359–1367 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

A. Lipson and E. M. Yeatman, “A 1-D Photonic Band Gap Tunable Optical Filter in (110) Silicon,” J. Microelectromech. Syst. 16(3), 521–527 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (2)

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[Crossref] [PubMed]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[Crossref] [PubMed]

RSC Adv. (1)

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Adv. 4(94), 51935–51941 (2014).
[Crossref]

Other (5)

H. A. Macleod, Thin-Film Optical Filters Fourth Edition (CRC Press, 2010) pp. 44, 218.

T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press LLC, 2003).

F. Mazda, Telecommunications Engineer's Reference Book (Butterworth-Heinemann Ltd,1993)

G. T. Reed, Silicon Photonics The State of The Art (John Wiley & Sons Ltd, 2008)

M. Csele, Fundamentals of Light Sources and Lasers (John Wiley & Sons, 2004) pp. 196.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (Si/Air)NFluid(Si/Air)N resonant cavity: (a) Schematic representation (not to scale) of a 1DPhC-FP-cavity exploiting two vertical silicon/air 1DPhC micromirrors with a half-wave air-defect in between with fluidic functionality. (b) Transmission spectra of the resonant cavity in (a) with K = 1 and N = 3, for biolayer thickness in the range 0-50 nm. (c) Calibration curve of the resonant cavity in (a) with K = 1 and N = 3, for biolayer thickness in the range 0-50 nm. (d) Surface sensitivity of optical biosensor based on the resonant cavity in (a) versus cavity-order K, as a function of the number of cells N of 1DPhC micromirrors. (e) Quality factor Q versus cavity-order K, as a function of the number of cells N of 1DPhC micromirrors. (f) Limit of detection LoD versus number of cells N of 1DPhC micromirrors, as a function of the cavity-order K.
Fig. 2
Fig. 2 (Si/Fluid)NFluid(Si/Fluid)N resonant cavity: (a) Schematic representation (not to scale) of a 1DPhC-FP-cavity exploiting two vertical silicon/air 1DPhC micromirrors with a half-wave air-defect in between, all of which with fluidic functionality. (b) Transmission spectra of the resonant cavity in (a) with K = 1 and N = 3, for biolayer thickness in the range 0-50 nm. (c) Calibration curve of the resonant cavity in (a) with K = 1 and N = 3, for biolayer thickness in the range 0-50 nm. (d) Surface sensitivity of optical biosensor based on the resonant cavity in (a) versus cavity-order K, as a function of the number of cells N of 1DPhC micromirrors. (e) Quality factor Q versus cavity-order K, as a function of the number of cells N of 1DPhC micromirrors. (f) Limit of detection LoD versus number of cells N of 1DPhC micromirrors, as a function of the cavity-order K.
Fig. 3
Fig. 3 (Si/Fluid)NSi(Si/Fluid)N resonant cavity: (a) Schematic representation (not to scale) of a 1DPhC-FP-cavity exploiting two vertical silicon/air 1DPhC micromirrors featuring fluidic functionality with a half-wave silicon-defect in between. (b) Transmission spectra of the resonant cavity in (a) with K = 1 and N = 3, for biolayer thickness in the range 0-50 nm. (c) Calibration curve of the resonant cavity in (a) with K = 1 and N = 3, for biolayer thickness in the range 0-50 nm. (d) Surface sensitivity of optical biosensor based on the resonant cavity in (a) versus cavity-order K, as a function of the number of cells N of 1DPhC micromirrors. (e) Quality factor Q versus cavity-order K, as a function of the number of cells N of 1DPhC micromirrors. (f) Limit of detection LoD versus number of cells N of 1DPhC micromirrors, as a function of the cavity-order K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T= E T / E I =1/ P 11 ( E I E R )= i=1 M 1 τ i 1,i [ e j φ i1 ρ i 1,i e j φ i1 ρ i 1,i e j φ i 1 e j φ i1 ]( E T 0 )=[ P 11 P 12 P 21 P 22 ]( E T 0 )

Metrics