Abstract

In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as “traps”, which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Anastasios H. Panaretos and Douglas H. Werner, "Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole: erratum," Opt. Express 24, 4979-4979 (2016)
http://proxy.osapublishing.org/oe/abstract.cfm?uri=oe-24-5-4979

OSA Recommended Articles
Engineering the optical response of nanodipole antennas using equivalent circuit representations of core-shell particle loads

Anastasios H. Panaretos and Douglas H. Werner
J. Opt. Soc. Am. B 30(11) 2840-2848 (2013)

Multi-port admittance model for quantifying the scattering response of loaded plasmonic nanorod antennas

Anastasios H. Panaretos and Douglas H. Werner
Opt. Express 23(4) 4459-4471 (2015)

Tunable wavelength dependent nanoswitches enabled by simple plasmonic core-shell particles

Anastasios H. Panaretos and Douglas H. Werner
Opt. Express 21(22) 26052-26068 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  2. M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).
  3. A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
    [Crossref]
  4. G. W. Hanson, “On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas,” IEEE Trans. Antenn. Propag. 54(12), 3677–3685 (2006).
    [Crossref]
  5. A. Locatelli, C. De Angelis, D. Modotto, S. Boscolo, F. Sacchetto, M. Midrio, A.-D. Capobianco, F. M. Pigozzo, and C. G. Someda, “Modeling of enhanced field confinement and scattering by optical wire antennas,” Opt. Express 17(19), 16792–16800 (2009).
    [Crossref] [PubMed]
  6. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  7. Y. Zhao, N. Engheta, and A. Alu, “Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties,” J. Opt. Soc. Am. B 28(5), 1266–1274 (2011).
    [Crossref]
  8. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  9. A. F. McKinley, T. P. White, and K. R. Catchpole, “Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions,” J. Appl. Phys. 114(4), 044317 (2013).
    [Crossref]
  10. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
    [Crossref] [PubMed]
  11. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
    [Crossref] [PubMed]
  12. N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
    [Crossref] [PubMed]
  13. L. Peng and N. A. Mortensen, “Plasmonic-cavity model for radiating nano-rod antennas,” Sci. Rep. 4, 3825/1–6 (2014).
  14. F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
    [Crossref]
  15. H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9, 217/1–12 (2007).
  16. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
    [Crossref]
  17. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [Crossref]
  18. A. H. Panaretos and D. H. Werner, “Engineering the optical response of nanodipole antennas using equivalent circuit representations of core-shell particle loads,” J. Opt. Soc. Am. B 30(11), 2840–2848 (2013).
    [Crossref]
  19. http://www.ukradioamateur.co.uk/full/html/c7-1-6.htm
  20. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
    [Crossref] [PubMed]
  21. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
    [Crossref]
  22. Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
    [Crossref] [PubMed]
  23. N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
    [Crossref] [PubMed]
  24. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010).
    [Crossref] [PubMed]
  25. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  26. R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-IEEE, 2001).
  27. A. H. Panaretos and D. H. Werner, “Tunable wavelength dependent nanoswitches enabled by simple plasmonic core-shell particles,” Opt. Express 21(22), 26052–26067 (2013).
    [Crossref] [PubMed]
  28. A. H. Panaretos and D. H. Werner, “A Transmission line approach to quantifying the resonance and transparency properties of electrical small layered plasmonic nanoparticles,” J. Opt. Soc. Am. B 31(7), 1573–1580 (2014).
    [Crossref]
  29. U. K. Chettiar and N. Engheta, “Internal homogenization: Effective permittivity of a coated sphere,” Opt. Express 20(21), 22976–22986 (2012).
    [Crossref] [PubMed]
  30. C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
    [Crossref] [PubMed]

2014 (3)

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

A. H. Panaretos and D. H. Werner, “A Transmission line approach to quantifying the resonance and transparency properties of electrical small layered plasmonic nanoparticles,” J. Opt. Soc. Am. B 31(7), 1573–1580 (2014).
[Crossref]

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

2013 (6)

A. H. Panaretos and D. H. Werner, “Tunable wavelength dependent nanoswitches enabled by simple plasmonic core-shell particles,” Opt. Express 21(22), 26052–26067 (2013).
[Crossref] [PubMed]

A. H. Panaretos and D. H. Werner, “Engineering the optical response of nanodipole antennas using equivalent circuit representations of core-shell particle loads,” J. Opt. Soc. Am. B 30(11), 2840–2848 (2013).
[Crossref]

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

A. F. McKinley, T. P. White, and K. R. Catchpole, “Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions,” J. Appl. Phys. 114(4), 044317 (2013).
[Crossref]

2012 (2)

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

U. K. Chettiar and N. Engheta, “Internal homogenization: Effective permittivity of a coated sphere,” Opt. Express 20(21), 22976–22986 (2012).
[Crossref] [PubMed]

2011 (2)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Y. Zhao, N. Engheta, and A. Alu, “Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties,” J. Opt. Soc. Am. B 28(5), 1266–1274 (2011).
[Crossref]

2010 (2)

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

2009 (2)

A. Locatelli, C. De Angelis, D. Modotto, S. Boscolo, F. Sacchetto, M. Midrio, A.-D. Capobianco, F. M. Pigozzo, and C. G. Someda, “Modeling of enhanced field confinement and scattering by optical wire antennas,” Opt. Express 17(19), 16792–16800 (2009).
[Crossref] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

2008 (3)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

2007 (2)

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2006 (1)

G. W. Hanson, “On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas,” IEEE Trans. Antenn. Propag. 54(12), 3677–3685 (2006).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abb, M.

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Aizpurua, J.

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Alu, A.

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

Y. Zhao, N. Engheta, and A. Alu, “Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties,” J. Opt. Soc. Am. B 28(5), 1266–1274 (2011).
[Crossref]

Alù, A.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

Boden, S. A.

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

Boscolo, S.

Capobianco, A.-D.

Catchpole, K. R.

A. F. McKinley, T. P. White, and K. R. Catchpole, “Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions,” J. Appl. Phys. 114(4), 044317 (2013).
[Crossref]

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Crozier, K.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

De Angelis, C.

de Groot, C. H.

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Denkova, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Engheta, N.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

U. K. Chettiar and N. Engheta, “Internal homogenization: Effective permittivity of a coated sphere,” Opt. Express 20(21), 22976–22986 (2012).
[Crossref] [PubMed]

Y. Zhao, N. Engheta, and A. Alu, “Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties,” J. Opt. Soc. Am. B 28(5), 1266–1274 (2011).
[Crossref]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Fischer, H.

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Halas, N. J.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas,” IEEE Trans. Antenn. Propag. 54(12), 3677–3685 (2006).
[Crossref]

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Huber, A. J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Lagae, L.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Large, N.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Liu, N.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Locatelli, A.

López-Tejeira, F.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Martin, O. J. F.

McKinley, A. F.

A. F. McKinley, T. P. White, and K. R. Catchpole, “Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions,” J. Appl. Phys. 114(4), 044317 (2013).
[Crossref]

Midrio, M.

Modotto, D.

Moshchalkov, V. V.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Muskens, O. L.

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Nordlander, P.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Panaretos, A. H.

Paniagua-Domínguez, R.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Pigozzo, F. M.

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Rodríguez-Oliveros, R.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Sacchetto, F.

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Sánchez-Gil, J. A.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Schnell, M.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Someda, C. G.

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Van Dorpe, P.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Vercruysse, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Wang, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

Wen, F.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Werner, D. H.

White, T. P.

A. F. McKinley, T. P. White, and K. R. Catchpole, “Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions,” J. Appl. Phys. 114(4), 044317 (2013).
[Crossref]

Zhao, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Y. Zhao, N. Engheta, and A. Alu, “Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties,” J. Opt. Soc. Am. B 28(5), 1266–1274 (2011).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

A. Alu and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

G. W. Hanson, “On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas,” IEEE Trans. Antenn. Propag. 54(12), 3677–3685 (2006).
[Crossref]

J. Appl. Phys. (1)

A. F. McKinley, T. P. White, and K. R. Catchpole, “Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions,” J. Appl. Phys. 114(4), 044317 (2013).
[Crossref]

J. Opt. Soc. Am. B (3)

Nano Lett. (6)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot, and O. L. Muskens, “Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling,” Nano Lett. 13(11), 5647–5653 (2013).
[Crossref] [PubMed]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

New J. Phys. (1)

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Opt. Express (4)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Other (6)

R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-IEEE, 2001).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9, 217/1–12 (2007).

http://www.ukradioamateur.co.uk/full/html/c7-1-6.htm

L. Peng and N. A. Mortensen, “Plasmonic-cavity model for radiating nano-rod antennas,” Sci. Rep. 4, 3825/1–6 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Computational model for the trapped dipole antenna. (b) Input admittance. (c) RCS. (d) Current distribution.
Fig. 2
Fig. 2 (a) Computational model for the short nanorod. (b) Input admittance. (c) Extinction and scattering efficiency. (d) Electromagnetic field distribution at resonance.
Fig. 3
Fig. 3 (a) Cylindrical capacitor loaded with a core-shell particle. 3D view. (b) Cylindrical capacitor loaded with a homogeneous dielectric sphere. (c) Core-shell geometry that is substituted for the homogeneous dielectric sphere in (b).
Fig. 4
Fig. 4 (a) Computational model for the trapped nanodipole antenna. (b) Input admittance. (c) Real part of the complex effective permittivity of the cylindrical load. (d) Imaginary part of the complex effective permittivity of the cylindrical load.
Fig. 5
Fig. 5 (a) Extinction and scattering efficiencies of the trapped nanodipole. (b) Electric and magnetic field distribution calculated at the first two resonance peaks as shown in Fig. 5(a). Top and bottom plots correspond to 272 THz and 402 THz respectively. (c) Extinction and scattering efficiencies of a solid nanodipole. (d) Electric and magnetic field distribution calculated at the resonance frequency shown in Fig. 5(c) occurring at 243 THz. (e) Extinction and scattering efficiencies of the free space loaded nanodipole. (f) Electric and magnetic field distribution calculated at the resonance frequency shown in Fig. 5(e) occurring at 395 THz.
Fig. 6
Fig. 6 Scattering efficiency of the trapped nanorod antenna for different values of its total length. For better clarity the graphs are shifted by 20 units along the vertical axis.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Y=jωC+ 1 jωL
ε r Ag = ε + f p 2 f( jνf )
Y in = 2πa H ϕ E z g
ε e ε h = ε h i=1 3 w i h i u( 1 h i ) , u ε h ε h ε f
ε cs = ε 2 1+2pζ 1pζ , ζ ε 1 ε 2 ε 1 +2 ε 2
ε e =1+ V P z d r 3 ( ε 0 V E z d r 3 ) 1

Metrics