Abstract

An energy adjustable passively Q-switched laser is demonstrated with a composite Nd:YAG/Cr4+:YAG crystal by applying a wedged interface inside the crystal. The theoretical model of the monolithic laser resonator is explored to show the energy adjustable feature with different initial transmissions of the saturable absorber at the horizontal axis. By adjusting the pump beam location across the Nd:YAG crystal, the output pulse energy can be flexibly changed from 10.9 μJ to 17.6 μJ while maintaining the same output efficiency. The polarization state of the laser output is found to be along with the polarization of the C-mount pump diode. Finally, the behavior of the multi-transverse-mode oscillation is also discussed for eliminating the instability of the pulse train.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers

Yan Feng, Jianren Lu, Kazunori Takaichi, Ken-ichi Ueda, Hideki Yagi, Takagimi Yanagitani, and Alexander A. Kaminskii
Appl. Opt. 43(14) 2944-2947 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. Commun. 133(1–6), 211–215 (1997).
    [Crossref]
  2. X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [Crossref]
  3. Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4–5), 415–418 (2002).
    [Crossref]
  4. H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
    [Crossref]
  5. Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
    [Crossref]
  6. Y. J. Huang, C. Y. Tang, Y. S. Tzeng, K. W. Su, and Y. F. Chen, “Efficient high-energy passively Q-switched Nd:YLF/Cr4+:YAG pulsed pumping in a nearly hemispherical cavity,” Opt. Lett. 38(4), 519–521 (2013).
    [Crossref] [PubMed]
  7. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3), 1253–1259 (2001).
    [Crossref]
  8. J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
    [Crossref]
  9. S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
    [Crossref]
  10. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic mocro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  11. O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
    [Crossref]
  12. J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
    [Crossref]
  13. M. Kaskow, J. Sulc, J. K. Jabczynski, and H. Jelinkova, “Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser,” Laser Phys. Lett. 11(12), 125809 (2014).
    [Crossref]
  14. W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, 2006), Chap. 8.
  15. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
    [Crossref]
  16. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [Crossref]
  17. S. O. Kasap, Optoelectronics and Photonics, 1st edn. (Prentice-Hall, 2001), Chap. 1.
  18. A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002).
    [Crossref] [PubMed]

2014 (1)

M. Kaskow, J. Sulc, J. K. Jabczynski, and H. Jelinkova, “Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser,” Laser Phys. Lett. 11(12), 125809 (2014).
[Crossref]

2013 (1)

2012 (3)

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

2011 (1)

2009 (1)

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

2006 (2)

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

2002 (2)

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4–5), 415–418 (2002).
[Crossref]

A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002).
[Crossref] [PubMed]

2001 (2)

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3), 1253–1259 (2001).
[Crossref]

1997 (2)

A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. Commun. 133(1–6), 211–215 (1997).
[Crossref]

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Agnesi, A.

A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. Commun. 133(1–6), 211–215 (1997).
[Crossref]

Balembois, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Bass, M.

Buchvarov, I.

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Cao, M.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

Chang, H. L.

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

Chen, Y. F.

Y. J. Huang, C. Y. Tang, Y. S. Tzeng, K. W. Su, and Y. F. Chen, “Efficient high-energy passively Q-switched Nd:YLF/Cr4+:YAG pulsed pumping in a nearly hemispherical cavity,” Opt. Lett. 38(4), 519–521 (2013).
[Crossref] [PubMed]

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4–5), 415–418 (2002).
[Crossref]

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

Chen, Y.-F.

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Cheng, Y.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

Chiang, P. Y.

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Chuchumishev, D.

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Dascalu, Y.

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Dell’Acqua, S.

A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. Commun. 133(1–6), 211–215 (1997).
[Crossref]

Dong, J.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Druon, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Feve, J. P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Forget, S.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Gaydardzhiev, A.

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Georges, P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

He, J. L.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Howard, A.

Huang, H. T.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Huang, Y. J.

Y. J. Huang, C. Y. Tang, Y. S. Tzeng, K. W. Su, and Y. F. Chen, “Efficient high-energy passively Q-switched Nd:YLF/Cr4+:YAG pulsed pumping in a nearly hemispherical cavity,” Opt. Lett. 38(4), 519–521 (2013).
[Crossref] [PubMed]

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Huang, Y. P.

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Jabczynski, J. K.

M. Kaskow, J. Sulc, J. K. Jabczynski, and H. Jelinkova, “Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser,” Laser Phys. Lett. 11(12), 125809 (2014).
[Crossref]

Jelinkova, H.

M. Kaskow, J. Sulc, J. K. Jabczynski, and H. Jelinkova, “Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser,” Laser Phys. Lett. 11(12), 125809 (2014).
[Crossref]

Kaminskii, A. A.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

Kaskow, M.

M. Kaskow, J. Sulc, J. K. Jabczynski, and H. Jelinkova, “Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser,” Laser Phys. Lett. 11(12), 125809 (2014).
[Crossref]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3), 1253–1259 (2001).
[Crossref]

Lan, Y. P.

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4–5), 415–418 (2002).
[Crossref]

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

Landru, N.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Lin, J.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Luang, H. C.

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Ma, J.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

Pavel, N.

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic mocro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3), 1253–1259 (2001).
[Crossref]

Rapaport, A.

Reali, G. C.

A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. Commun. 133(1–6), 211–215 (1997).
[Crossref]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3), 1253–1259 (2001).
[Crossref]

Salamu, G.

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Sandu, O.

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Shirakawa, A.

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Su, K. W.

Y. J. Huang, C. Y. Tang, Y. S. Tzeng, K. W. Su, and Y. F. Chen, “Efficient high-energy passively Q-switched Nd:YLF/Cr4+:YAG pulsed pumping in a nearly hemispherical cavity,” Opt. Lett. 38(4), 519–521 (2013).
[Crossref] [PubMed]

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

Sulc, J.

M. Kaskow, J. Sulc, J. K. Jabczynski, and H. Jelinkova, “Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser,” Laser Phys. Lett. 11(12), 125809 (2014).
[Crossref]

Sun, L. K.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic mocro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3), 1253–1259 (2001).
[Crossref]

Tang, C. Y.

Tsunekane, M.

Tzeng, Y. S.

Ueda, K. I.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Wang, H. X.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Wang, Q. P.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Weng, Z.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Xiao, G.

Xu, G.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

Xu, J. L.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Yagi, H.

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

Yang, J. F.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Yang, X. Q.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Zhang, B. T.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Zhang, Q. D.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, S. J.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhao, S.

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002).
[Crossref] [PubMed]

Zhao, S. Z.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4–5), 415–418 (2002).
[Crossref]

J. Dong, A. Shirakawa, and K. I. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Luang, K. W. Su, and Y.-F. Chen, “Hign-power passively Q-switched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106(4), 893–898 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001).
[Crossref]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, “Optimization of Cr4+:doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(3), 1253–1259 (2001).
[Crossref]

Laser Phys. (1)

H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, “2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal,” Laser Phys. 19(8), 1824–1827 (2009).
[Crossref]

Laser Phys. Lett. (1)

M. Kaskow, J. Sulc, J. K. Jabczynski, and H. Jelinkova, “Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser,” Laser Phys. Lett. 11(12), 125809 (2014).
[Crossref]

Opt. Commun. (2)

A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. Commun. 133(1–6), 211–215 (1997).
[Crossref]

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

J. Dong, G. Xu, J. Ma, M. Cao, Y. Cheng, K. I. Ueda, H. Yagi, and A. A. Kaminskii, “Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals,” Opt. Mater. 34(6), 959–964 (2012).
[Crossref]

Quantum Electron. (1)

O. Sandu, G. Salamu, N. Pavel, Y. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Other (2)

W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, 2006), Chap. 8.

S. O. Kasap, Optoelectronics and Photonics, 1st edn. (Prentice-Hall, 2001), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The experimental setup for the energy adjustable bulk PQS laser. (b) The photo of the composite crystal.
Fig. 2
Fig. 2 The calculated result for the initial transmission of the wedged saturable absorber with respect to the pump location, x.
Fig. 3
Fig. 3 The experimental result and the theoretical analysis of (a) the output pulse energy and (b) the output peak power with respect to the pump location, x.
Fig. 4
Fig. 4 The experimental result of the output pulse width with respect to the pump location, x. The inset: the temporal pulse shape of the PQS laser with pump location x = 2.5 mm.
Fig. 5
Fig. 5 The pulse train and the pulse shape of the PQS laser with pump location x = 2.5 mm when the incident pump power (a), (b) lower than 1.9 W and (c), (d) higher than 1.9 W.
Fig. 6
Fig. 6 The average output power with respect to the incident pump power at pump location x = 2.5 mm. The inset: the transverse mode distribution for the incident pump power (a) lower than 1.9 W and (b) higher than 1.9 W.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T 0 ( x )=exp[ n g σ gs l s ( x ) ],
l s ( x )= l s0 +xcot(θ),
E out ( x )= hνA 2σ ln 1 R ( 1β )ln 1 T 0 ( x ) 2 βln 1 T 0 ( x ) 2 +ln 1 R +L [ 1 ( T 0 ( x ) ( T 0 ) upper ) η ]f( α,β ),
α= A A s σ gs σ ,
β= σ es / σ gs ,
( T 0 ) upper =exp[ ln 1 R +L 2( α( 1β )1 ) ].
P peak = hνA 2σ ln 1 R c 2n l cav { ( 1β )ln 1 T 0 ( x ) 2 [ 1 1 α [ 1 ( n t n i ) α ] ]+( βln 1 T 0 ( x ) 2 +ln 1 R +L )ln n t n i }.
n t / n i = ( βln 1 T 0 ( x ) 2 +ln 1 R +L ) / ( ln 1 T 0 ( x ) 2 +ln 1 R +L ) .
r TE = cos( θ i ) n i 2 sin 2 ( θ i ) cos( θ i )+ n i 2 sin 2 ( θ i ) ,
r TM = n i 2 sin 2 ( θ i ) n i 2 cos( θ i ) n i 2 sin 2 ( θ i ) + n i 2 cos( θ i ) ,

Metrics