Abstract

Electron tunneling through narrow gaps between metal nanoparticles can strongly affect the plasmonic response of the hybrid nanostructure. Although quantum mechanical in nature, this effect can be properly taken into account within a classical framework of Maxwell equations using the so-called Quantum Corrected Model (QCM). We extend previous studies on spherical cluster and cylindrical nanowire dimers where the tunneling current occurs in the extremely localized gap regions, and perform quantum mechanical time dependent density functional theory (TDDFT) calculations of the plasmonic response of cylindrical core-shell nanoparticles (nanomatryushkas). In this axially symmetric situation, the tunneling region extends over the entire gap between the metal core and the metallic shell. For core-shell separations below 0.5 nm, the standard classical calculations fail to describe the plasmonic response of the cylindrical nanomatryushka, while the QCM can reproduce the quantum results. Using the QCM we also retrieve the quantum results for the absorption cross section of the spherical nanomatryushka calculated by V. Kulkarni et al. [Nano Lett. 13, 5873 (2013)]. The comparison between the model and the full quantum calculations establishes the applicability of the QCM for a wider range of geometries that hold tunneling gaps.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers

Tatiana V. Teperik, Peter Nordlander, Javier Aizpurua, and Andrei G. Borisov
Opt. Express 21(22) 27306-27325 (2013)

Quantum effects in the plasmon response of bimetallic core-shell nanostructures

Dana-Codruta Marinica, Javier Aizpurua, and Andrei G. Borisov
Opt. Express 24(21) 23941-23956 (2016)

Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis

Muhammad Khalid, Fabio Della Sala, and Cristian Ciracì
Opt. Express 26(13) 17322-17334 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
    [Crossref] [PubMed]
  2. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
    [Crossref] [PubMed]
  3. B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
    [Crossref] [PubMed]
  4. R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett. 11, 2968–2972 (2011).
    [Crossref] [PubMed]
  5. J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
    [Crossref] [PubMed]
  6. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
    [Crossref] [PubMed]
  7. R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
    [Crossref] [PubMed]
  8. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [Crossref] [PubMed]
  9. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
    [Crossref] [PubMed]
  10. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
    [Crossref]
  11. D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
    [Crossref] [PubMed]
  12. Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
    [Crossref] [PubMed]
  13. D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
    [Crossref] [PubMed]
  14. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  15. R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
    [Crossref]
  16. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  17. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref] [PubMed]
  18. A. J. Pasquale, B. M. Reinhard, and L. D. Negro, “Engineering photonic-plasmonic coupling in metal nanoparticle necklaces,” ACS Nano 5, 6578–6585 (2011).
    [Crossref] [PubMed]
  19. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [Crossref]
  20. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [Crossref] [PubMed]
  21. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
    [Crossref] [PubMed]
  22. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [Crossref] [PubMed]
  23. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
    [Crossref]
  24. H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
    [Crossref]
  25. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
    [Crossref] [PubMed]
  26. J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
    [Crossref] [PubMed]
  27. B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
    [Crossref] [PubMed]
  28. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
    [Crossref]
  29. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
    [Crossref]
  30. R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
    [Crossref] [PubMed]
  31. X. Ben and H. S. Park, “Size-dependent validity bounds on the universal plasmon ruler for metal nanostructure dimers,” J. Phys. Chem. C 116, 18944–18951 (2012).
    [Crossref]
  32. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [Crossref] [PubMed]
  33. A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
    [Crossref] [PubMed]
  34. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012).
    [Crossref] [PubMed]
  35. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
    [Crossref]
  36. S. Paloma, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
    [Crossref]
  37. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
    [Crossref] [PubMed]
  38. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [Crossref] [PubMed]
  39. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
    [Crossref]
  40. S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
    [Crossref] [PubMed]
  41. G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14, 6651–6654 (2014).
    [Crossref] [PubMed]
  42. W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nature Commun. 5, 4228 (2014).
    [Crossref]
  43. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
    [Crossref] [PubMed]
  44. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
    [Crossref] [PubMed]
  45. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun. 3, 825 (2012).
    [Crossref]
  46. J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
    [Crossref]
  47. L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
    [Crossref]
  48. T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
    [Crossref] [PubMed]
  49. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
    [Crossref] [PubMed]
  50. K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87, 235433 (2013).
    [Crossref]
  51. R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
    [Crossref]
  52. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
    [Crossref]
  53. S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
    [Crossref]
  54. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
    [Crossref]
  55. O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
    [Crossref] [PubMed]
  56. O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
    [Crossref]
  57. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
    [Crossref] [PubMed]
  58. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
    [Crossref]
  59. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
    [Crossref] [PubMed]
  60. G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012).
    [Crossref] [PubMed]
  61. G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett. 37, 2538–2540 (2012).
    [Crossref] [PubMed]
  62. Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
    [Crossref] [PubMed]
  63. G. Toscano, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Self-consistent hydrodynamic approach to nanoplasmonics: resonance shifts and spill-out effects,” arXiv:1408.5862 [physics.optics].
  64. P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
    [Crossref]
  65. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  66. R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
    [Crossref] [PubMed]
  67. S. Gao, P. Li, and F. Li, “Geometrical parameters controlled focusing and enhancing near field in infinite circular metal-dielectric multilayered cylinder,” Appl. Phys. Lett. 102, 123107 (2013).
    [Crossref]
  68. Y. Hu, R. C. Flemming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16, 19579–19591 (2008).
    [Crossref] [PubMed]
  69. R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
    [Crossref]
  70. J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
    [Crossref]
  71. O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5, 209–216 (2013).
    [Crossref]
  72. C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
    [Crossref] [PubMed]
  73. C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
    [Crossref] [PubMed]
  74. E. Román-Velázques and C. Nogues, “Designing the plasmonic responce of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134, 044116 (2011).
    [Crossref]
  75. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
    [Crossref]
  76. V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: optical properties of a nanomatryushka,” Nano Lett. 13, 5873–5879 (2013).
    [Crossref] [PubMed]
  77. C. Yannouleas, E. Vigezzi, and R. A. Broglia, “Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description,” Phys. Rev. B 47, 9849–9861 (1993).
    [Crossref]
  78. Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
    [Crossref]
  79. E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett. 3, 1411–1415 (2003).
    [Crossref]
  80. E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
    [Crossref]
  81. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
    [Crossref]
  82. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
    [Crossref]
  83. M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Annu. Rev. Phys. Chem. 55, 427–455 (2004).
    [Crossref] [PubMed]
  84. O. Gunnarson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism,” Phys. Rev. B 13, 4274–4298 (1976).
    [Crossref]
  85. E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.
  86. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
    [Crossref]
  87. P. Apell and D. R. Penn, “Optical properties of small metal spheres: surface effects,” Phys. Rev. Lett. 50, 1316–1319 (1983).
    [Crossref]
  88. P. Apell and Å. Ljungbert, “Red shift of surface plasmons in small metal particles,” Solid State Commun. 44, 1367–1369 (1982).
    [Crossref]
  89. H. Haberland, “Looking from both sides,” Nature 494, E1–E2 (2013).
    [Crossref] [PubMed]

2015 (1)

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

2014 (7)

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14, 6651–6654 (2014).
[Crossref] [PubMed]

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nature Commun. 5, 4228 (2014).
[Crossref]

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
[Crossref]

C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
[Crossref] [PubMed]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

2013 (10)

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

S. Gao, P. Li, and F. Li, “Geometrical parameters controlled focusing and enhancing near field in infinite circular metal-dielectric multilayered cylinder,” Appl. Phys. Lett. 102, 123107 (2013).
[Crossref]

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
[Crossref] [PubMed]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[Crossref] [PubMed]

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87, 235433 (2013).
[Crossref]

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: optical properties of a nanomatryushka,” Nano Lett. 13, 5873–5879 (2013).
[Crossref] [PubMed]

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5, 209–216 (2013).
[Crossref]

H. Haberland, “Looking from both sides,” Nature 494, E1–E2 (2013).
[Crossref] [PubMed]

2012 (13)

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun. 3, 825 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett. 37, 2538–2540 (2012).
[Crossref] [PubMed]

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
[Crossref]

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012).
[Crossref] [PubMed]

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

X. Ben and H. S. Park, “Size-dependent validity bounds on the universal plasmon ruler for metal nanostructure dimers,” J. Phys. Chem. C 116, 18944–18951 (2012).
[Crossref]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

2011 (13)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref] [PubMed]

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett. 11, 2968–2972 (2011).
[Crossref] [PubMed]

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. D. Negro, “Engineering photonic-plasmonic coupling in metal nanoparticle necklaces,” ACS Nano 5, 6578–6585 (2011).
[Crossref] [PubMed]

E. Román-Velázques and C. Nogues, “Designing the plasmonic responce of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134, 044116 (2011).
[Crossref]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref] [PubMed]

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

2010 (10)

J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref] [PubMed]

Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
[Crossref] [PubMed]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
[Crossref] [PubMed]

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

2009 (6)

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

S. Paloma, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[Crossref]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Hu, R. C. Flemming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16, 19579–19591 (2008).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

2007 (3)

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

2006 (1)

2005 (3)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
[Crossref]

2004 (3)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Annu. Rev. Phys. Chem. 55, 427–455 (2004).
[Crossref] [PubMed]

2003 (5)

E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett. 3, 1411–1415 (2003).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[Crossref] [PubMed]

1999 (1)

H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

1998 (1)

1993 (3)

C. Yannouleas, E. Vigezzi, and R. A. Broglia, “Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description,” Phys. Rev. B 47, 9849–9861 (1993).
[Crossref]

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

1983 (1)

P. Apell and D. R. Penn, “Optical properties of small metal spheres: surface effects,” Phys. Rev. Lett. 50, 1316–1319 (1983).
[Crossref]

1982 (1)

P. Apell and Å. Ljungbert, “Red shift of surface plasmons in small metal particles,” Solid State Commun. 44, 1367–1369 (1982).
[Crossref]

1976 (1)

O. Gunnarson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism,” Phys. Rev. B 13, 4274–4298 (1976).
[Crossref]

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Aguirregabiria, G.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

Aizpurua, J.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun. 3, 825 (2012).
[Crossref]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref] [PubMed]

Allegrini, M.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Alvarez-Puebla, R.

R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[Crossref]

Andersen, K.

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87, 235433 (2013).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Apell, P.

P. Apell and D. R. Penn, “Optical properties of small metal spheres: surface effects,” Phys. Rev. Lett. 50, 1316–1319 (1983).
[Crossref]

P. Apell and Å. Ljungbert, “Red shift of surface plasmons in small metal particles,” Solid State Commun. 44, 1367–1369 (1982).
[Crossref]

Arielly, R.

R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett. 11, 2968–2972 (2011).
[Crossref] [PubMed]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Aussenegg, F. R.

Ayala-Orozco, C.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

Bachelier, G.

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012).
[Crossref] [PubMed]

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

Bai, P.

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Bardhan, R.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Ben, X.

X. Ben and H. S. Park, “Size-dependent validity bounds on the universal plasmon ruler for metal nanostructure dimers,” J. Phys. Chem. C 116, 18944–18951 (2012).
[Crossref]

Berthelot, J.

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012).
[Crossref] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[Crossref] [PubMed]

Biagioni, P.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Bjeneld, E.

H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Bonaccorso, F.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Bonnet, Ch.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

Borisov, A. G.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun. 3, 825 (2012).
[Crossref]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Borisov, A.G.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

Börjesson, L.

H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Bosman, M.

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref] [PubMed]

Bouhelier, A.

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Broglia, R. A.

C. Yannouleas, E. Vigezzi, and R. A. Broglia, “Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description,” Phys. Rev. B 47, 9849–9861 (1993).
[Crossref]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Broyer, J. L.

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

Broyer, M.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

Bryant, G. W.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Calogero, G.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Campoy-Quiles, M.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5, 209–216 (2013).
[Crossref]

Celep, G.

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Chaturvedi, N.

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

Chiappe, D.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Chilkoti, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Colas des Francs, G.

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012).
[Crossref] [PubMed]

Coronado, E.

L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Cottancin, E.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

Cronin, S. B.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
[Crossref] [PubMed]

Crozier, K.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

Crozier, K. B.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nature Commun. 5, 4228 (2014).
[Crossref]

Cuevas, J. C.

D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref] [PubMed]

D’Andrea, C.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Danckwerts, M.

S. Paloma, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[Crossref]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref] [PubMed]

David, C.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

Day, J. K.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

de Mongeot, F. B.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

DeLacy, B. G.

C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
[Crossref] [PubMed]

Dereux, A

Dinh, P. M.

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Dregely, D.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref] [PubMed]

Drezek, R. A.

Duan, H.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref] [PubMed]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Echternach, P. M.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

Emmerling, M.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun. 3, 825 (2012).
[Crossref]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Evers, F.

G. Toscano, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Self-consistent hydrodynamic approach to nanoplasmonics: resonance shifts and spill-out effects,” arXiv:1408.5862 [physics.optics].

Fazio, B.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Feist, J.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
[Crossref]

Fennel, Th.

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

Fernandez-Dominguez, A. I.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
[Crossref] [PubMed]

Flemming, R. C.

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Gao, S.

S. Gao, P. Li, and F. Li, “Geometrical parameters controlled focusing and enhancing near field in infinite circular metal-dielectric multilayered cylinder,” Appl. Phys. Lett. 102, 123107 (2013).
[Crossref]

Gao, X.

Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
[Crossref] [PubMed]

García de Abajo, F. J.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[Crossref]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

García-Etxarri, A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

García-González, P.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
[Crossref]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
[Crossref]

García-Vidal, F. J.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
[Crossref]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
[Crossref]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
[Crossref] [PubMed]

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Giessen, H.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref] [PubMed]

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Gordon, R.

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14, 6651–6654 (2014).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Gray, Stephen K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Grillet, N.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

Gross, E. K. U.

M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Annu. Rev. Phys. Chem. 55, 427–455 (2004).
[Crossref] [PubMed]

Großmann, S.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Gucciardi, P. G.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Gunnarson, O.

O. Gunnarson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism,” Phys. Rev. B 13, 4274–4298 (1976).
[Crossref]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Haberland, H.

H. Haberland, “Looking from both sides,” Nature 494, E1–E2 (2013).
[Crossref] [PubMed]

Häckel, T.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Hajisalem, G.

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14, 6651–6654 (2014).
[Crossref] [PubMed]

Halas, N. J.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett. 3, 1411–1415 (2003).
[Crossref]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

Hao, Q. Z.

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[Crossref] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Hecht, B.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref] [PubMed]

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Hill, R. T.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
[Crossref] [PubMed]

Hu, Y.

Huang, F. M.

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Huang, J.-S.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Huang, S.-W.

Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
[Crossref] [PubMed]

Huang, T. J.

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

Huber, A. J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

Hucknall, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

Hueser, F.

D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref] [PubMed]

Huntzinger,

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Hwang, J.-H.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Irrera, A.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

Jauho, A.-P.

Jensen, K. L.

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87, 235433 (2013).
[Crossref]

Jensen, L.

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Jia, C.

Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
[Crossref] [PubMed]

Jin, Y.

Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
[Crossref] [PubMed]

Joannopoulos, J. D.

C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
[Crossref] [PubMed]

Johnson, S. G.

C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
[Crossref] [PubMed]

Jokerst, N. M.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

Juluri, B. K.

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Käll, M.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Kamp, M.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

Kazansky, A. K.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref] [PubMed]

Kelly, L.

L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Kern, J.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Kim, H.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Knight, M. W.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Koh, A. L.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Krenn, J. R.

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Kulkarni, V.

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: optical properties of a nanomatryushka,” Nano Lett. 13, 5873–5879 (2013).
[Crossref] [PubMed]

Kwon, S.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Lee, T.-Ch.

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Leitner, A.

Lerme, J.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

Lermé, J.

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

Levit, S. D.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

Li, F.

S. Gao, P. Li, and F. Li, “Geometrical parameters controlled focusing and enhancing near field in infinite circular metal-dielectric multilayered cylinder,” Appl. Phys. Lett. 102, 123107 (2013).
[Crossref]

Li, P.

S. Gao, P. Li, and F. Li, “Geometrical parameters controlled focusing and enhancing near field in infinite circular metal-dielectric multilayered cylinder,” Appl. Phys. Lett. 102, 123107 (2013).
[Crossref]

Li, Y.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
[Crossref]

Liebsch, A.

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
[Crossref]

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Liu, J. G.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref] [PubMed]

Liz-Marzán, L. M.

R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[Crossref]

Ljungbert, Å.

P. Apell and Å. Ljungbert, “Red shift of surface plasmons in small metal particles,” Solid State Commun. 44, 1367–1369 (1982).
[Crossref]

Lu, M. Q.

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

Lundqvist, B. I.

O. Gunnarson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism,” Phys. Rev. B 13, 4274–4298 (1976).
[Crossref]

Luo, Y.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
[Crossref] [PubMed]

Mahajan, S.

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Maier, S. A.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
[Crossref] [PubMed]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Marhaba, S.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Marinica, D. C.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref] [PubMed]

Markey, L.

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

Marques, M. A. L.

M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Annu. Rev. Phys. Chem. 55, 427–455 (2004).
[Crossref] [PubMed]

Martella, C.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Meiwes-Broer, K.-H.

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Mennemanteuil, M-M

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

Meunier, V.

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

Mirin, N. A.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

Mock, J. J.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

Mortensen, N. A.

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87, 235433 (2013).
[Crossref]

G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012).
[Crossref] [PubMed]

G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett. 37, 2538–2540 (2012).
[Crossref] [PubMed]

G. Toscano, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Self-consistent hydrodynamic approach to nanoplasmonics: resonance shifts and spill-out effects,” arXiv:1408.5862 [physics.optics].

Mukherjee, S.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

Muller, R. E.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
[Crossref] [PubMed]

Nam, J.-M.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Natelson, D.

D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref] [PubMed]

Negro, L. D.

A. J. Pasquale, B. M. Reinhard, and L. D. Negro, “Engineering photonic-plasmonic coupling in metal nanoparticle necklaces,” ACS Nano 5, 6578–6585 (2011).
[Crossref] [PubMed]

Nezami, M. S.

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14, 6651–6654 (2014).
[Crossref] [PubMed]

Nijhuis, C. A.

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Nogues, C.

E. Román-Velázques and C. Nogues, “Designing the plasmonic responce of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134, 044116 (2011).
[Crossref]

Nordlander, P.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: optical properties of a nanomatryushka,” Nano Lett. 13, 5873–5879 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun. 3, 825 (2012).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett. 3, 1411–1415 (2003).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Novotny, L.

S. Paloma, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[Crossref]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[Crossref] [PubMed]

Noy, G.

R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett. 11, 2968–2972 (2011).
[Crossref] [PubMed]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

O’Donnell, M.

Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
[Crossref] [PubMed]

Ofarim, A.

R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett. 11, 2968–2972 (2011).
[Crossref] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Pal, U.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5, 209–216 (2013).
[Crossref]

Paloma, S.

S. Paloma, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[Crossref]

Park, H. S.

X. Ben and H. S. Park, “Size-dependent validity bounds on the universal plasmon ruler for metal nanostructure dimers,” J. Phys. Chem. C 116, 18944–18951 (2012).
[Crossref]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. D. Negro, “Engineering photonic-plasmonic coupling in metal nanoparticle necklaces,” ACS Nano 5, 6578–6585 (2011).
[Crossref] [PubMed]

Pauly, F.

D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref] [PubMed]

Pavaskar, P.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
[Crossref] [PubMed]

Pellarin, M.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

Peña-Rodríguez, O.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5, 209–216 (2013).
[Crossref]

Pendry, J. B.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
[Crossref] [PubMed]

Penn, D. R.

P. Apell and D. R. Penn, “Optical properties of small metal spheres: surface effects,” Phys. Rev. Lett. 50, 1316–1319 (1983).
[Crossref]

Pérez-González, O.

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Prangsma, J. C.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Prodan, E.

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: optical properties of a nanomatryushka,” Nano Lett. 13, 5873–5879 (2013).
[Crossref] [PubMed]

J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett. 3, 1411–1415 (2003).
[Crossref]

Qian, J.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
[Crossref]

Quidant, R.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

Quinten, M.

Rai, P.

Raza, S.

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. D. Negro, “Engineering photonic-plasmonic coupling in metal nanoparticle necklaces,” ACS Nano 5, 6578–6585 (2011).
[Crossref] [PubMed]

Reinhard, P.-G.

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Rivera, A.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5, 209–216 (2013).
[Crossref]

Rockstuhl, C.

G. Toscano, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Self-consistent hydrodynamic approach to nanoplasmonics: resonance shifts and spill-out effects,” arXiv:1408.5862 [physics.optics].

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Román-Velázques, E.

E. Román-Velázques and C. Nogues, “Designing the plasmonic responce of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134, 044116 (2011).
[Crossref]

Romero, I.

Rubio, A.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
[Crossref]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
[Crossref]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Schatz, G. C.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Scherman, O. A.

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Selzer, Y.

R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett. 11, 2968–2972 (2011).
[Crossref] [PubMed]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Smith, D. R.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

Soljacic, M.

C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
[Crossref] [PubMed]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Song, M.

Stella, L.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
[Crossref]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Stolz, A.

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

Suh, Y. D.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

Sun, Q.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
[Crossref]

Suraud, E.

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Tan, S. F.

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Tarakina, N. V.

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

Taylor, R. W.

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

Teperik, T. V.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[Crossref] [PubMed]

Theiss, J.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Thygesen, K. S.

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87, 235433 (2013).
[Crossref]

Tiggesbäumker, J.

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

Toma, A.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Toscano, G.

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Vasi, C.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

Velegol, D.

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

Vialle, J. R.

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

Vialle, J.-L.

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

Vigezzi, E.

C. Yannouleas, E. Vigezzi, and R. A. Broglia, “Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description,” Phys. Rev. B 47, 9849–9861 (1993).
[Crossref]

Vogelgesang, R.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref] [PubMed]

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

Wang, W.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
[Crossref]

Wang, Y.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

Wang, Y. M.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

Ward, D. R.

D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Wiener, A.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
[Crossref] [PubMed]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Wolter, S. D.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

Wu, L.

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Wubs, M.

Xiao, S.

Xu, H.

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
[Crossref]

H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

G. Toscano, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Self-consistent hydrodynamic approach to nanoplasmonics: resonance shifts and spill-out effects,” arXiv:1408.5862 [physics.optics].

Xu, J.

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
[Crossref]

Yang, J. K. W.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref] [PubMed]

Yang, J.K.W.

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Yannouleas, C.

C. Yannouleas, E. Vigezzi, and R. A. Broglia, “Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description,” Phys. Rev. B 47, 9849–9861 (1993).
[Crossref]

Zabala, N.

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

Zhang, P.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
[Crossref]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
[Crossref]

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Zhao, L. L.

L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zhu, W.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nature Commun. 5, 4228 (2014).
[Crossref]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Zugarramurdi, A.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

Zuolaga, J.

J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

ACS Nano (8)

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3, 1231–1237 (2009).
[Crossref] [PubMed]

B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano 5, 5838–5847 (2011).
[Crossref] [PubMed]

R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano 5, 3878–3887 (2011).
[Crossref] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. D. Negro, “Engineering photonic-plasmonic coupling in metal nanoparticle necklaces,” ACS Nano 5, 6578–6585 (2011).
[Crossref] [PubMed]

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5, 5945–5956 (2011).
[Crossref] [PubMed]

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[Crossref] [PubMed]

J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

Annu. Rev. Phys. Chem. (1)

M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Annu. Rev. Phys. Chem. 55, 427–455 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Gao, P. Li, and F. Li, “Geometrical parameters controlled focusing and enhancing near field in infinite circular metal-dielectric multilayered cylinder,” Appl. Phys. Lett. 102, 123107 (2013).
[Crossref]

Chem. Phys. Lett. (2)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).
[Crossref]

Chem. Rev. (2)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, Stephen K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

J. Chem. Phys. (2)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

E. Román-Velázques and C. Nogues, “Designing the plasmonic responce of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134, 044116 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

S. Paloma, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[Crossref]

J. Phys. Chem. B (2)

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

J. Phys. Chem. C (6)

X. Ben and H. S. Park, “Size-dependent validity bounds on the universal plasmon ruler for metal nanostructure dimers,” J. Phys. Chem. C 116, 18944–18951 (2012).
[Crossref]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114, 7378–7383 (2010).
[Crossref]

J. Qian, W. Wang, Y. Li, J. Xu, and Q. Sun, “Optical extinction properties of perforated gold-silica-gold multilayer nanoshells,” J. Phys. Chem. C 116, 10349–10355 (2012).
[Crossref]

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[Crossref]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C 117, 8941–8949 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[Crossref]

Nano Lett. (17)

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett. 11, 2968–2972 (2011).
[Crossref] [PubMed]

J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett. 12, 5504–5509 (2012).
[Crossref] [PubMed]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[Crossref]

A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10, 2749–2754 (2010).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref] [PubMed]

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14, 6651–6654 (2014).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[Crossref] [PubMed]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Theoretical criteria for scattering dark states in nanostructured particles,” Nano Lett. 14, 2783–2788 (2014).
[Crossref] [PubMed]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref] [PubMed]

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: optical properties of a nanomatryushka,” Nano Lett. 13, 5873–5879 (2013).
[Crossref] [PubMed]

E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett. 3, 1411–1415 (2003).
[Crossref]

Nanoscale (1)

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5, 209–216 (2013).
[Crossref]

Nat. Commun. (1)

Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat. Commun. 1, 41 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6, 452–460 (2011).
[Crossref] [PubMed]

D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref] [PubMed]

Nature (2)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

H. Haberland, “Looking from both sides,” Nature 494, E1–E2 (2013).
[Crossref] [PubMed]

Nature Commun. (2)

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nature Commun. 5, 4228 (2014).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun. 3, 825 (2012).
[Crossref]

Nature Photon. (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012).
[Crossref]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photon. 3, 287–291 (2009).
[Crossref]

New J. Phys. (1)

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13, 083013 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (7)

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
[Crossref]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable optical field,” Phys. Rev. B 72, 073405 (2005).
[Crossref]

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87, 235433 (2013).
[Crossref]

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[Crossref]

C. Yannouleas, E. Vigezzi, and R. A. Broglia, “Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description,” Phys. Rev. B 47, 9849–9861 (1993).
[Crossref]

O. Gunnarson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism,” Phys. Rev. B 13, 4274–4298 (1976).
[Crossref]

Phys. Rev. Lett. (8)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[Crossref] [PubMed]

P. Apell and D. R. Penn, “Optical properties of small metal spheres: surface effects,” Phys. Rev. Lett. 50, 1316–1319 (1983).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett. 108, 106802 (2012).
[Crossref] [PubMed]

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: a simple model,” Phys. Rev. Lett. 111, 093901 (2013).
[Crossref] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Rev. Mod. Phys. (1)

Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).
[Crossref]

Science (3)

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref] [PubMed]

S. F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

P. Apell and Å. Ljungbert, “Red shift of surface plasmons in small metal particles,” Solid State Commun. 44, 1367–1369 (1982).
[Crossref]

Other (4)

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, Huntzinger, J. R. Vialle, and J. L. Broyer, “Optical properties of noble metal clusters as function of the size: comparison between experiments and semi-quantal theory,” Theor. Chem. Acc2006, 116, 514–523.

G. Toscano, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Self-consistent hydrodynamic approach to nanoplasmonics: resonance shifts and spill-out effects,” arXiv:1408.5862 [physics.optics].

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss., (2015), DOI: .
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the geometry of the cylindrical nanomatryushka. The coaxial cylindrical core and cylindrical shell are infinite along the z-axis. The core has the radius R1; the internal radius of the shell is R2, and the external radius of the shell is R3. The core and the shell are separated by the vacuum gap. The incident field with amplitude Eo, and angular frequency ω is polarized perpendicular to the axis of the NM.
Fig. 2
Fig. 2 (a) Absorption cross section per unit length. The green line shows the TDDFT result for an individual nanowire with radius R = 61 Å. The rest of the results are obtained using classical electromagnetic theory within a nonretarded approximation. Black dashed line: individual nanowire with radius R = 61 Å. Blue line: cylindrical shell with internal radius R2 = 47.7 Å, and external radius R3 = 61 Å. Red line: cylindrical (37.1, 47.7, 61) Å nanomatryushka. The inserts show the direction of the radial electric fields associated to the ω , ω +, and ω c + modes of the core-shell structure. The arrows indicate the corresponding absorption resonances. (b) Schematic charge distribution for the different plasmonic modes identified in a).
Fig. 3
Fig. 3 Waterfall plot of the absorption cross section per unit length, σ, of a cylindrical nanomatryushka defined by (R1, 47.7, 61) Å, or equivalently (R1, 90, 115) a0, where the Bohr radius a0 = 0.53 Å, calculated using classical electromagnetic theory (top), TDDFT (center) and the Quantum Corrected Model (QCM) (bottom). Results are given as a function of the frequency ω of the incident radiation for different core radii R1. The left panels show the results within a large ω range showing all the resonances described in Fig. 2. R1 varies within the limits 50 a0R1 ≤ 90 a0 (26.5 ÅR1 ≤ 47.7 Å), corresponding to gap separation distances, S, from 40 a0 down to 0, as indicated by the blue arrows on the spectra. For clarity, a vertical shift is introduced to each absorption spectrum. The curves are displayed in red every 10 a0 ≈ 5.3 Å of R1-change. The lowest absorption spectrum in each panel corresponds to R1 = 50 a0 (S = 40 a0), and the red dashed curve on top (S = 0) is used as a reference for the absorption spectrum of the solid metallic cylinder with external radius R = 115 a0 (61 Å). The plasmonic modes responsible for the peaks in the absorption cross-section are labeled in each panel. ω stands for the bonding hybridized resonance, ω + for the hybridized resonance with a dominantly core character, and ω c + for the anti-bonding resonance of the nanomatryushka. The right panels focus on results for core radii R1 in the range of 78 a0R1 ≤ 84 a0 (41.3 ÅR1 ≤ 44.5 Å) at the frequency range of the ω plasmon of 0.4 eV≤ ω ≤ 1.4 eV. These are the conditions where the effect of the resonant electron transfer on the bonding hybridized plasmon ω is most prominent. The correspondence between the color used for the absorption spectra and the value of the core radius R1 is given at the lower right panel of the figure. R1 is indicated in units of a0 and the number in parenthesis gives the corresponding size of the gap, S, between the core surface and the inner surface of the outer shell.
Fig. 4
Fig. 4 Resonant field enhancement in the middle of the gap between the core and the shell of a NM, defined as the ratio of the total Et and the incident Ein fields, = |Et/Ein|, measured in the middle of the gap at R = (R1 + R2)/2 in the axis defined by the polarization of the incident field. Dots represent the TDDFT results, dashed lines represent results obtained using classical Drude calculations, and solid lines represent the QCM results. Red color is used for the data at the frequency of the lowest energy bonding hybridized resonance ω , and blue color for the data at the frequency of the main absorption peak labeled as the ω + resonance. The shaded background separates the region where tunneling occurs from the classical region.
Fig. 5
Fig. 5 Absorption cross section, σabs, for a spherical gold nanomatryushka as a function of frequency ω. The results are normalized to the absorption maximum. Different NMs are considered whose dimensions are defined by λ × (R1 = 8.5, R2 = 9.5, R3 = 15.9) Å where the values of λ ranges from 1 to 5, as displayed in the inset. R1 is the core radius. R2, and R3 stand respectively for the internal and external radius of the shell. Upper panel: quantum results from TDDFT calculations from [76] by Kulkarni et al. Lower panel: current results based on the QCM. The bonding hybridized resonance ω , and the main absorption peak of the core resonance ω + are indicated in the upper panel. The graphs in the insets show the respective zooms into the low-energy bonding hybridized resonance.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω ) = 4 π ω c Im { α ( ω ) } .
ε ( ω ) = 1 ω p 2 ω ( ω + i γ ) ,
ε eff ( S , ω ) = 1 ω p 2 ω ( ω + i γ eff ( S ) ) .
γ eff = γ 0 e [ S / Δ ] .
ε ( ω ) = ε ω p 2 ω ( ω + i γ ) ,
ε eff ( S , ω ) = ε ω p 2 ω ( ω + i γ eff ( S ) ) ,

Metrics