Abstract

We demonstrated the efficient guided laser action in a diode-pumped YAG/Nd:YAG/YAG ceramic planar waveguide produced by tape casting and vacuum sintering technology for the first time to the best of our knowledge. In the regime of continuous wave operation, a maximum output power of 840 mW corresponding to the slope efficiency of 65% was achieved. During passively Q-switched operation, by replacing the dichroic mirror with graphene-oxide based output coupler, we obtained the stable pulse trains with the shortest pulse duration of 179 ns at a pulse repetition rate of 930 kHz which resulted in the single pulse energy of 221 nJ.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped tape casting planar waveguide YAG/Tm:YAG/YAG ceramic laser at 2013.76  nm

Baoquan Yao, Xiaolei Li, Tongyu Dai, Zheng Cui, Shuang Bai, Hongyu Yang, Jiang Li, Youlun Ju, Lin Ge, Yuezhu Wang, and Yubai Pan
Opt. Lett. 41(2) 254-256 (2016)

Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation

Mi Hye Kim, Thomas Calmano, Sun Young Choi, Byung Jic Lee, In Hyung Baek, Kwang Jun Ahn, Dong-Il Yeom, Christian Kränkel, and Fabian Rotermund
Opt. Mater. Express 6(8) 2468-2474 (2016)

Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser

Xian-lei Li, Jin-long Xu, Yong-zhong Wu, Jing-liang He, and Xiao-peng Hao
Opt. Express 19(10) 9950-9955 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  2. S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
    [Crossref]
  3. W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
    [Crossref] [PubMed]
  4. W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
    [Crossref]
  5. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
    [Crossref] [PubMed]
  6. J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
    [Crossref]
  7. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [Crossref]
  8. Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics,” Opt. Mater. Express 3(5), 645–650 (2013).
    [Crossref]
  9. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
    [PubMed]
  10. Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
    [Crossref]
  11. F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
    [Crossref]
  12. L. Ge, J. Li, Z. W. Zhou, H. Y. Qu, M. J. Dong, Y. Zhu, T. F. Xie, W. Li, M. Chen, H. M. Kou, Y. Shi, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser,” Opt. Mater. Express 4(5), 1042–1049 (2014).
    [Crossref]
  13. Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett. 29(11), 1251–1253 (2004).
    [Crossref] [PubMed]
  14. Y. J. Chai, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, R. V. Penty, I. H. White, and W. Sibbett, “1.36-Tb/s spectral slicing source based on a Cr4+:YAG femtosecond laser,” J. Lightwave Technol. 23(3), 1319–1324 (2005).
    [Crossref]
  15. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [Crossref]
  16. J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27(24), 2161–2163 (2002).
    [Crossref] [PubMed]
  17. J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
    [PubMed]
  18. Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
    [Crossref] [PubMed]
  19. Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
    [Crossref] [PubMed]
  20. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
    [Crossref] [PubMed]
  21. S. Mou, C. F. Lin, and H. F. Chou, “Quasi-3-D beam-propagation method for modeling nonlinear wavelength conversion,” J. Lightwave Technol. 19(5), 772–779 (2001).
    [Crossref]
  22. A. Choudhary, S. Dhingra, B. D’Urso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, “Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber,” Opt. Lett. 39(15), 4325–4328 (2014).
    [PubMed]
  23. J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
    [Crossref] [PubMed]
  24. L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
    [Crossref]
  25. Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
    [Crossref]
  26. X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
    [Crossref]
  27. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
    [Crossref] [PubMed]
  28. F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
    [Crossref]
  29. J. I. Mackenzie, C. Li, D. P. Shepherd, R. J. Beach, and S. C. Mitchell, “Modeling of high-power continuous-wave Tm: YAG side-pumped double-clad waveguide lasers,” IEEE J. Quantum Electron. 38(2), 222–230 (2002).
    [Crossref]
  30. D. Findlay and R. A. Clay, “Measurement of Internal Losses in 4-Level Lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [Crossref]
  31. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
    [Crossref]
  32. R. Antipenkov, A. Varanavičius, A. Zaukevičius, and A. P. Piskarskas, “Femtosecond Yb:KGW MOPA driven broadband NOPA as a frontend for TW few-cycle pulse systems,” Opt. Express 19(4), 3519–3524 (2011).
    [Crossref] [PubMed]
  33. J. A. Morris and C. R. Pollock, “Passive Q-Switching of a Diode-Pumped Nd:YAG Laser with a Saturable Absorber,” Opt. Lett. 15(8), 440–442 (1990).
    [Crossref] [PubMed]

2014 (5)

2013 (4)

2012 (7)

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
[Crossref] [PubMed]

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

2011 (4)

R. Antipenkov, A. Varanavičius, A. Zaukevičius, and A. P. Piskarskas, “Femtosecond Yb:KGW MOPA driven broadband NOPA as a frontend for TW few-cycle pulse systems,” Opt. Express 19(4), 3519–3524 (2011).
[Crossref] [PubMed]

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

2009 (1)

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
[Crossref]

2008 (1)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

2007 (3)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[Crossref] [PubMed]

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

2005 (1)

2004 (1)

2002 (2)

J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27(24), 2161–2163 (2002).
[Crossref] [PubMed]

J. I. Mackenzie, C. Li, D. P. Shepherd, R. J. Beach, and S. C. Mitchell, “Modeling of high-power continuous-wave Tm: YAG side-pumped double-clad waveguide lasers,” IEEE J. Quantum Electron. 38(2), 222–230 (2002).
[Crossref]

2001 (1)

1997 (1)

1990 (1)

1966 (1)

D. Findlay and R. A. Clay, “Measurement of Internal Losses in 4-Level Lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Abramski, K. M.

Akhmadaliev, S.

Antipenkov, R.

Aravazhi, S.

Beach, R. J.

J. I. Mackenzie, C. Li, D. P. Shepherd, R. J. Beach, and S. C. Mitchell, “Modeling of high-power continuous-wave Tm: YAG side-pumped double-clad waveguide lasers,” IEEE J. Quantum Electron. 38(2), 222–230 (2002).
[Crossref]

Benayad, A.

Benayas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Boguslawski, J.

Bolanos, W.

Brasse, G.

Braud, A.

Brown, C. T. A.

Cai, Z.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
[Crossref]

Camy, P.

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Cao, Y. G.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

Chai, Y. J.

Chen, F.

Chen, H. R.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Chen, M.

Chen, Y. F.

Chen, Y. S.

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Cheng, C.

Chichkov, B. N.

Choi, S. Y.

Chou, H. F.

Choudhary, A.

Clay, R. A.

D. Findlay and R. A. Clay, “Measurement of Internal Losses in 4-Level Lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

D’Urso, B.

Dhingra, S.

Dong, J.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[Crossref] [PubMed]

Dong, M. J.

Doualan, J. L.

Eason, R. W.

Feng, X. Q.

Findlay, D.

D. Findlay and R. A. Clay, “Measurement of Internal Losses in 4-Level Lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Ge, L.

Geim, A. K.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Girit, C.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Griebner, U.

Guo, J. K.

Guo, W.

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

Han, Z. H.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Holdynski, M.

Hou, W.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Hsieh, W. F.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Huang, J. Q.

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

Huang, Q. F.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

Huang, Z.

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

Jacobs, H.

Jagiello, J.

Jaque, D.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Jia, Y.

Jipa, F.

Kaminskii, A. A.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[Crossref] [PubMed]

Katsnelson, M. I.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Kim, J. W.

Kou, H. M.

Kozinski, R.

Lagatsky, A. A.

Leburn, C. G.

Li, C.

J. I. Mackenzie, C. Li, D. P. Shepherd, R. J. Beach, and S. C. Mitchell, “Modeling of high-power continuous-wave Tm: YAG side-pumped double-clad waveguide lasers,” IEEE J. Quantum Electron. 38(2), 222–230 (2002).
[Crossref]

Li, J.

Li, J. M.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Li, J. T.

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

Li, W.

Lin, C. F.

Lin, X. C.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Lipinska, L.

Liu, F.

Liu, F. Q.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Liu, H. G.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

Liu, J.

Liu, Z. B.

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Lu, Q. M.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Luan, Q.

Mackenzie, J. I.

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. I. Mackenzie, C. Li, D. P. Shepherd, R. J. Beach, and S. C. Mitchell, “Modeling of high-power continuous-wave Tm: YAG side-pumped double-clad waveguide lasers,” IEEE J. Quantum Electron. 38(2), 222–230 (2002).
[Crossref]

J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27(24), 2161–2163 (2002).
[Crossref] [PubMed]

Ménard, V.

Meyer, J. C.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Mitchell, S. C.

J. I. Mackenzie, C. Li, D. P. Shepherd, R. J. Beach, and S. C. Mitchell, “Modeling of high-power continuous-wave Tm: YAG side-pumped double-clad waveguide lasers,” IEEE J. Quantum Electron. 38(2), 222–230 (2002).
[Crossref]

Momma, C.

Moncorgé, R.

Morris, J. A.

Mou, S.

Ng, S. P.

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

Nolte, S.

Novoselov, K. S.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Obergfell, D.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Paletko, P.

Pan, Y. B.

Parsonage, T. L.

Pavel, N.

Penty, R. V.

Petrov, V.

Piskarskas, A. P.

Pollnau, M.

Pollock, C. R.

Qu, H. Y.

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Rotermund, F.

Roth, S.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Salamu, G.

Shepherd, D. P.

Shi, Y.

Shirakawa, A.

Sibbett, W.

Sloyan, K. A.

Sobon, G.

Sotor, J.

Starecki, F.

Sun, S.

Sun, W.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Tan, Y.

Tang, F.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

Tang, J.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Tian, J. G.

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Torchia, G. A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Tsang, Y. H.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Tunnermann, A.

Ueda, K.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[Crossref] [PubMed]

Varanavicius, A.

Vázquez de Aldana, J. R.

Wang, P.

Wang, W. C.

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

Wang, Y. G.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Wellegehausen, B.

Welling, H.

White, I. H.

Wu, S.

Wu, Y. P.

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Xie, T. F.

Xu, J.

Yagi, H.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[Crossref] [PubMed]

Yan, W. B.

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Yanagitani, T.

Yang, Q. H.

Yeom, D. I.

Yu, H. J.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Zamfirescu, M.

Zaukevicius, A.

Zdrojek, M.

Zettl, A.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Zhang, C.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Zhang, L.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Zhang, S. B.

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Zhang, X. L.

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Zhao, X.

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Zhou, S.

Zhou, Z. W.

Zhu, Y.

Appl. Phys. B (1)

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Appl. Phys. Lett. (2)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

J. I. Mackenzie, C. Li, D. P. Shepherd, R. J. Beach, and S. C. Mitchell, “Modeling of high-power continuous-wave Tm: YAG side-pumped double-clad waveguide lasers,” IEEE J. Quantum Electron. 38(2), 222–230 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. Am. Ceram. Soc. (1)

F. Tang, Y. G. Cao, J. Q. Huang, H. G. Liu, W. Guo, and W. C. Wang, “Fabrication and Laser Behavior of Composite Yb:YAG Ceramic,” J. Am. Ceram. Soc. 95(1), 56–59 (2012).
[Crossref]

J. Eur. Ceram. Soc. (2)

W. Guo, Y. G. Cao, Q. F. Huang, J. T. Li, J. Q. Huang, Z. Huang, and F. Tang, “Fabrication and laser behaviors of Nd:YAG ceramic microchips,” J. Eur. Ceram. Soc. 31(13), 2241–2246 (2011).
[Crossref]

F. Tang, Y. G. Cao, J. Q. Huang, W. Guo, H. G. Liu, Q. F. Huang, and W. C. Wang, “Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method,” J. Eur. Ceram. Soc. 32(16), 3995–4002 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[Crossref]

L. Zhang, Y. G. Wang, H. J. Yu, W. Sun, Z. H. Han, S. B. Zhang, W. Hou, X. C. Lin, J. M. Li, and J. Tang, “Passively Q-Switched and mode-locked Nd:YVO4 laser with sandwich structured wallpaper graphene oxide absorber,” Laser Phys. 22(1), 133–136 (2012).
[Crossref]

Laser Phys. Lett. (1)

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6(4), 282–289 (2009).
[Crossref]

Opt. Commun. (1)

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013).
[Crossref]

Opt. Express (7)

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012).
[Crossref] [PubMed]

J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012).
[Crossref] [PubMed]

R. Antipenkov, A. Varanavičius, A. Zaukevičius, and A. P. Piskarskas, “Femtosecond Yb:KGW MOPA driven broadband NOPA as a frontend for TW few-cycle pulse systems,” Opt. Express 19(4), 3519–3524 (2011).
[Crossref] [PubMed]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
[PubMed]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref] [PubMed]

Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
[Crossref] [PubMed]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Opt. Lett. (7)

Opt. Mater. Express (2)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “Measurement of Internal Losses in 4-Level Lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Solid State Commun. (1)

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single- and bi-layer graphene membranes,” Solid State Commun. 143(1-2), 101–109 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Setup for the continuous wave and GO-based Q-switched laser experiments.
Fig. 2
Fig. 2 Laser performance in continuous-wave regime of Nd:YAG ceramic planar waveguide laser.
Fig. 3
Fig. 3 Near-field beam profile of the guided laser mode.
Fig. 4
Fig. 4 The AFM image of monolayer GO sheets.
Fig. 5
Fig. 5 (a), (b) TEM images and the selected electron diffraction of monolayer GO sheets, respectively.
Fig. 6
Fig. 6 Laser performance of Nd:YAG ceramic planar waveguide in GO-based passively Q-switched regime.
Fig. 7
Fig. 7 Temporal pulse profiles of passively Q-switched Nd:YAG ceramic planar waveguide laser.
Fig. 8
Fig. 8 Q-switched pulse duration and pulse repetition rate versus the absorbed pump power.
Fig. 9
Fig. 9 The laser spectrum of Nd:YAG ceramic planar waveguide laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η del = θ inc θ inc e [lnln( 16 ) ( θ θ FWHM ) 2 ] dθ 90 90 e [lnln( 16 ) ( θ θ FWHM ) 2 ] dθ

Metrics