Abstract

Tin doped indium oxide (ITO) coatings fabricated onto D-shaped optical fibers are presented as the supporting medium for Lossy Mode Resonances (LMRs) generation. The characteristic geometry of ITO-coated D-shaped optical fibers enables to observe experimentally LMRs obtained with both TM and TE polarized light (LMRTM and LMRTE). This permits to obtain a maximum transmission decay of 36 dB with a LMR spectral width of 6.9 nm, improving that obtained in previous works, where the LMRs were a combination of an LMRTM and an LMRTE. Surrounding medium refractive index (SMRI) sensitivity characterization of LMRTM has been performed obtaining a maximum sensitivity of 8742 nm/RIU in the range 1.365-1.38 refractive index units (RIU) which overcomes that of surface plasmon resonance-based optical fiber devices presented in recent works.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings

Miguel Hernáez, Ignacio Del Villar, Carlos R. Zamarreño, Francisco J. Arregui, and Ignacio R. Matias
Appl. Opt. 49(20) 3980-3985 (2010)

Theoretical modeling of lossy mode resonance based refractive index sensors with ITO/TiO2 bilayers

Nidhi Paliwal and Joseph John
Appl. Opt. 53(15) 3241-3246 (2014)

Design rules for lossy mode resonance based sensors

Ignacio Del Villar, Miguel Hernaez, Carlos R. Zamarreño, Pedro Sánchez, Carlos Fernández-Valdivielso, Francisco J. Arregui, and Ignacio R. Matias
Appl. Opt. 51(19) 4298-4307 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw and A. Kersey, “Fiber-Optic Sensing: A Historical Perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
    [Crossref]
  2. O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors,” Anal. Chem. 76(12), 3269–3284 (2004).
    [Crossref] [PubMed]
  3. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [Crossref] [PubMed]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54(1), 3–15 (1999).
    [PubMed]
  6. I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy Mode Resonance Generation With Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
    [Crossref]
  7. F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
    [Crossref]
  8. I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
    [Crossref] [PubMed]
  9. C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sensor Actuat, Biol. Chem. 175, 106–110 (2012).
  10. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem. 155(1), 290–297 (2011).
    [Crossref]
  11. D. Kaur, V. K. Sharma, and A. Kapoor, “High sensitivity lossy mode resonance sensors,” Sens. Actuators B Chem. 198, 366–376 (2014).
    [Crossref]
  12. C. Ruiz Zamarreño, P. Zubiate, M. Sagües, I. R. Matias, and F. J. Arregui, “Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations,” Opt. Lett. 38(14), 2481–2483 (2013).
    [Crossref] [PubMed]
  13. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt. 22(19), 3070–3072 (1983).
    [Crossref] [PubMed]
  14. A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A-Pure Appl. Op. 10(3), 035303 (2008).
  15. Y. Liu, W. Peng, X. Zhang, and S. Qian, “Optical fiber sensor based on capillary wall for highly-sensitive refractive index measurement,” Opt. Commun. 319, 106–109 (2014).
    [Crossref]
  16. C. Du and X. Yang, “Highly sensitive refractive index measurement based on a thinned fiber taper,” Microw. Opt. Technol. Lett. 56(5), 1054–1057 (2014).
    [Crossref]
  17. W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
    [Crossref] [PubMed]

2014 (3)

D. Kaur, V. K. Sharma, and A. Kapoor, “High sensitivity lossy mode resonance sensors,” Sens. Actuators B Chem. 198, 366–376 (2014).
[Crossref]

Y. Liu, W. Peng, X. Zhang, and S. Qian, “Optical fiber sensor based on capillary wall for highly-sensitive refractive index measurement,” Opt. Commun. 319, 106–109 (2014).
[Crossref]

C. Du and X. Yang, “Highly sensitive refractive index measurement based on a thinned fiber taper,” Microw. Opt. Technol. Lett. 56(5), 1054–1057 (2014).
[Crossref]

2013 (2)

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

C. Ruiz Zamarreño, P. Zubiate, M. Sagües, I. R. Matias, and F. J. Arregui, “Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations,” Opt. Lett. 38(14), 2481–2483 (2013).
[Crossref] [PubMed]

2012 (2)

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sensor Actuat, Biol. Chem. 175, 106–110 (2012).

2011 (1)

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem. 155(1), 290–297 (2011).
[Crossref]

2010 (1)

2008 (2)

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2004 (1)

O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors,” Anal. Chem. 76(12), 3269–3284 (2004).
[Crossref] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54(1), 3–15 (1999).
[PubMed]

1997 (1)

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

1983 (1)

Arregui, F. J.

Cooper, P. R.

Culshaw, B.

Del Villar, I.

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sensor Actuat, Biol. Chem. 175, 106–110 (2012).

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem. 155(1), 290–297 (2011).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy Mode Resonance Generation With Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

Du, C.

C. Du and X. Yang, “Highly sensitive refractive index measurement based on a thinned fiber taper,” Microw. Opt. Technol. Lett. 56(5), 1054–1057 (2014).
[Crossref]

Fernández-Valdivielso, C.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54(1), 3–15 (1999).
[PubMed]

Hernaez, M.

Hernáez, M.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem. 155(1), 290–297 (2011).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54(1), 3–15 (1999).
[PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Ji, W. B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Kapoor, A.

D. Kaur, V. K. Sharma, and A. Kapoor, “High sensitivity lossy mode resonance sensors,” Sens. Actuators B Chem. 198, 366–376 (2014).
[Crossref]

Kaur, D.

D. Kaur, V. K. Sharma, and A. Kapoor, “High sensitivity lossy mode resonance sensors,” Sens. Actuators B Chem. 198, 366–376 (2014).
[Crossref]

Kersey, A.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lin, B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, W. Peng, X. Zhang, and S. Qian, “Optical fiber sensor based on capillary wall for highly-sensitive refractive index measurement,” Opt. Commun. 319, 106–109 (2014).
[Crossref]

Loock, H.-P.

Lopez, S.

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sensor Actuat, Biol. Chem. 175, 106–110 (2012).

Matias, I. R.

Matías, I. R.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem. 155(1), 290–297 (2011).
[Crossref]

Ng, C. L.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Peng, W.

Y. Liu, W. Peng, X. Zhang, and S. Qian, “Optical fiber sensor based on capillary wall for highly-sensitive refractive index measurement,” Opt. Commun. 319, 106–109 (2014).
[Crossref]

Qian, S.

Y. Liu, W. Peng, X. Zhang, and S. Qian, “Optical fiber sensor based on capillary wall for highly-sensitive refractive index measurement,” Opt. Commun. 319, 106–109 (2014).
[Crossref]

Ruiz Zamarreño, C.

Sagües, M.

Sambles, J. R.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

Sánchez, P.

Sharma, V. K.

D. Kaur, V. K. Sharma, and A. Kapoor, “High sensitivity lossy mode resonance sensors,” Sens. Actuators B Chem. 198, 366–376 (2014).
[Crossref]

Tian, Z.

Tjin, S. C.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors,” Anal. Chem. 76(12), 3269–3284 (2004).
[Crossref] [PubMed]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yam, S. S.-H.

Yang, F.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

Yang, X.

C. Du and X. Yang, “Highly sensitive refractive index measurement based on a thinned fiber taper,” Microw. Opt. Technol. Lett. 56(5), 1054–1057 (2014).
[Crossref]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54(1), 3–15 (1999).
[PubMed]

Zamarreño, C. R.

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sensor Actuat, Biol. Chem. 175, 106–110 (2012).

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem. 155(1), 290–297 (2011).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy Mode Resonance Generation With Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

Zhang, X.

Y. Liu, W. Peng, X. Zhang, and S. Qian, “Optical fiber sensor based on capillary wall for highly-sensitive refractive index measurement,” Opt. Commun. 319, 106–109 (2014).
[Crossref]

Zubiate, P.

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors,” Anal. Chem. 76(12), 3269–3284 (2004).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

Microw. Opt. Technol. Lett. (1)

C. Du and X. Yang, “Highly sensitive refractive index measurement based on a thinned fiber taper,” Microw. Opt. Technol. Lett. 56(5), 1054–1057 (2014).
[Crossref]

Opt. Commun. (1)

Y. Liu, W. Peng, X. Zhang, and S. Qian, “Optical fiber sensor based on capillary wall for highly-sensitive refractive index measurement,” Opt. Commun. 319, 106–109 (2014).
[Crossref]

Opt. Lett. (2)

Sens. Actuators B Chem. (2)

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem. 155(1), 290–297 (2011).
[Crossref]

D. Kaur, V. K. Sharma, and A. Kapoor, “High sensitivity lossy mode resonance sensors,” Sens. Actuators B Chem. 198, 366–376 (2014).
[Crossref]

Sensor Actuat, Biol. Chem. (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat, Biol. Chem. 54(1), 3–15 (1999).
[PubMed]

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sensor Actuat, Biol. Chem. 175, 106–110 (2012).

Sensors (Basel) (1)

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Other (1)

A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, A. O. Dikovska, and P. A. Atanasov, “Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide,” J. Opt. A-Pure Appl. Op. 10(3), 035303 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental fabrication setup used to monitor the ITO deposition process and detail of the D-shaped fiber (bottom).
Fig. 2
Fig. 2 Experimental characterization setup.
Fig. 3
Fig. 3 Output optical power at 1300 nm and 1550 nm as a function of the deposition time (coating thickness).
Fig. 4
Fig. 4 Transmittance spectra without polarizer (black line), with TE polarized light (blue line), with TE theoretical (dotted blue line), with TM polarized light (red line) and TM theoretical (dotted red line) when the SMRI of device A is a) air (n = 1) and b) water (n = 1.32)
Fig. 5
Fig. 5 a) Spectral response and b) maximum attenuation wavelength of LMRTM (device A) when the sensitive region is immersed in solutions with different refractive index.

Metrics